Goto

Collaborating Authors

 Tarlow, Daniel


Consensus Message Passing for Layered Graphical Models

arXiv.org Artificial Intelligence

Generative models provide a powerful framework for probabilistic reasoning. However, in many domains their use has been hampered by the practical difficulties of inference. This is particularly the case in computer vision, where models of the imaging process tend to be large, loopy and layered. For this reason bottom-up conditional models have traditionally dominated in such domains. We find that widely-used, general-purpose message passing inference algorithms such as Expectation Propagation (EP) and Variational Message Passing (VMP) fail on the simplest of vision models. With these models in mind, we introduce a modification to message passing that learns to exploit their layered structure by passing 'consensus' messages that guide inference towards good solutions. Experiments on a variety of problems show that the proposed technique leads to significantly more accurate inference results, not only when compared to standard EP and VMP, but also when compared to competitive bottom-up conditional models.


Just-In-Time Learning for Fast and Flexible Inference

Neural Information Processing Systems

Much of research in machine learning has centered around the search for inference algorithms that are both general-purpose and efficient. The problem is extremely challenging and general inference remains computationally expensive. We seek to address this problem by observing that in most specific applications of a model, we typically only need to perform a small subset of all possible inference computations. Motivated by this, we introduce just-in-time learning, a framework for fast and flexible inference that learns to speed up inference at run-time. Through a series of experiments, we show how this framework can allow us to combine the flexibility of sampling with the efficiency of deterministic message-passing.


A* Sampling

Neural Information Processing Systems

The problem of drawing samples from a discrete distribution can be converted into a discrete optimization problem. In this work, we show how sampling from a continuous distribution can be converted into an optimization problem over continuous space. Central to the method is a stochastic process recently described in mathematical statistics that we call the Gumbel process. We present a new construction of the Gumbel process and A* sampling, a practical generic sampling algorithm that searches for the maximum of a Gumbel process using A* search. We analyze the correctness and convergence time of A* sampling and demonstrate empirically that it makes more efficient use of bound and likelihood evaluations than the most closely related adaptive rejection sampling-based algorithms.


Structured Generative Models of Natural Source Code

arXiv.org Machine Learning

We study the problem of building generative models of natural source code (NSC); that is, source code written and understood by humans. Our primary contribution is to describe a family of generative models for NSC that have three key properties: First, they incorporate both sequential and hierarchical structure. Second, we learn a distributed representation of source code elements. Finally, they integrate closely with a compiler, which allows leveraging compiler logic and abstractions when building structure into the model. We also develop an extension that includes more complex structure, refining how the model generates identifier tokens based on what variables are currently in scope. Our models can be learned efficiently, and we show empirically that including appropriate structure greatly improves the models, measured by the probability of generating test programs.


Learning to Pass Expectation Propagation Messages

Neural Information Processing Systems

Expectation Propagation (EP) is a popular approximate posterior inference algorithm that often provides a fast and accurate alternative to sampling-based methods. However, while the EP framework in theory allows for complex non-Gaussian factors, there is still a significant practical barrier to using them within EP, because doing so requires the implementation of message update operators, which can be difficult and require hand-crafted approximations. In this work, we study the question of whether it is possible to automatically derive fast and accurate EP updates by learning a discriminative model e.g., a neural network or random forest) to map EP message inputs to EP message outputs. We address the practical concerns that arise in the process, and we provide empirical analysis on several challenging and diverse factors, indicating that there is a space of factors where this approach appears promising.


Detecting Parameter Symmetries in Probabilistic Models

arXiv.org Machine Learning

Probabilistic models often have parameters that can be translated, scaled, permuted, or otherwise transformed without changing the model. These symmetries can lead to strong correlation and multimodality in the posterior distribution over the model's parameters, which can pose challenges both for performing inference and interpreting the results. In this work, we address the automatic detection of common problematic model symmetries. To do so, we introduce local symmetries, which cover many common cases and are amenable to automatic detection. We show how to derive algorithms to detect several broad classes of local symmetries. Our algorithms are compatible with probabilistic programming constructs such as arrays, for loops, and if statements, and they scale to models with many variables.


Cardinality Restricted Boltzmann Machines

Neural Information Processing Systems

The Restricted Boltzmann Machine (RBM) is a popular density model that is also good for extracting features. A main source of tractability in RBM models is the model's assumption that given an input, hidden units activate independently from one another. Sparsity and competition in the hidden representation is believed to be beneficial, and while an RBM with competition among its hidden units would acquire some of the attractive properties of sparse coding, such constraints are not added due to the widespread belief that the resulting model would become intractable. In this work, we show how a dynamic programming algorithm developed in 1981 can be used to implement exact sparsity in the RBM's hidden units. We then expand on this and show how to pass derivatives through a layer of exact sparsity, which makes it possible to fine-tune a deep belief network (DBN) consisting of RBMs with sparse hidden layers. We show that sparsity in the RBM's hidden layer improves the performance of both the pre-trained representations and of the fine-tuned model.


Probabilistic n-Choose-k Models for Classification and Ranking

Neural Information Processing Systems

In categorical data there is often structure in the number of variables that take on each label. For example, the total number of objects in an image and the number of highly relevant documents per query in web search both tend to follow a structured distribution. In this paper, we study a probabilistic model that explicitly includes a prior distribution over such counts, along with a count-conditional likelihood that defines probabilities over all subsets of a given size. When labels are binary and the prior over counts is a Poisson-Binomial distribution, a standard logistic regression model is recovered, but for other count distributions, such priors induce global dependencies and combinatorics that appear to complicate learning and inference. However, we demonstrate that simple, efficient learning procedures can be derived for more general forms of this model. We illustrate the utility of the formulation by exploring applications to multi-object classification, learning to rank, and top-K classification.


Fast Exact Inference for Recursive Cardinality Models

arXiv.org Machine Learning

Cardinality potentials are a generally useful class of high order potential that affect probabilities based on how many of D binary variables are active. Maximum a posteriori (MAP) inference for cardinality potential models is well-understood, with efficient computations taking O(DlogD) time. Yet efficient marginalization and sampling have not been addressed as thoroughly in the machine learning community. We show that there exists a simple algorithm for computing marginal probabilities and drawing exact joint samples that runs in O(Dlog2 D) time, and we show how to frame the algorithm as efficient belief propagation in a low order tree-structured model that includes additional auxiliary variables. We then develop a new, more general class of models, termed Recursive Cardinality models, which take advantage of this efficiency. Finally, we show how to do efficient exact inference in models composed of a tree structure and a cardinality potential. We explore the expressive power of Recursive Cardinality models and empirically demonstrate their utility.


Flexible Priors for Exemplar-based Clustering

arXiv.org Machine Learning

Exemplar-based clustering methods have been shown to produce state-of-the-art results on a number of synthetic and real-world clustering problems. They are appealing because they offer computational benefits over latent-mean models and can handle arbitrary pairwise similarity measures between data points. However, when trying to recover underlying structure in clustering problems, tailored similarity measures are often not enough; we also desire control over the distribution of cluster sizes. Priors such as Dirichlet process priors allow the number of clusters to be unspecified while expressing priors over data partitions. To our knowledge, they have not been applied to exemplar-based models. We show how to incorporate priors, including Dirichlet process priors, into the recently introduced affinity propagation algorithm. We develop an efficient maxproduct belief propagation algorithm for our new model and demonstrate experimentally how the expanded range of clustering priors allows us to better recover true clusterings in situations where we have some information about the generating process.