Goto

Collaborating Authors

 Tappenden, Rachael


A Study on Monthly Marine Heatwave Forecasts in New Zealand: An Investigation of Imbalanced Regression Loss Functions with Neural Network Models

arXiv.org Artificial Intelligence

Marine heatwaves (MHWs) are extreme ocean-temperature events with significant impacts on marine ecosystems and related industries. Accurate forecasts (one to six months ahead) of MHWs would aid in mitigating these impacts. However, forecasting MHWs presents a challenging imbalanced regression task due to the rarity of extreme temperature anomalies in comparison to more frequent moderate conditions. In this study, we examine monthly MHW forecasts for 12 locations around New Zealand. We use a fully-connected neural network and compare standard and specialized regression loss functions, including the mean squared error (MSE), the mean absolute error (MAE), the Huber, the weighted MSE, the focal-R, the balanced MSE, and a proposed scaling-weighted MSE. Results show that (i) short lead times (one month) are considerably more predictable than three- and six-month leads, (ii) models trained with the standard MSE or MAE losses excel at forecasting average conditions but struggle to capture extremes, and (iii) specialized loss functions such as the balanced MSE and our scaling-weighted MSE substantially improve forecasting of MHW and suspected MHW events. These findings underscore the importance of tailored loss functions for imbalanced regression, particularly in forecasting rare but impactful events such as MHWs.


Stochastic Gradient Methods with Preconditioned Updates

arXiv.org Artificial Intelligence

This work considers the non-convex finite sum minimization problem. There are several algorithms for such problems, but existing methods often work poorly when the problem is badly scaled and/or ill-conditioned, and a primary goal of this work is to introduce methods that alleviate this issue. Thus, here we include a preconditioner based on Hutchinson's approach to approximating the diagonal of the Hessian, and couple it with several gradient-based methods to give new scaled algorithms: Scaled SARAH and Scaled L-SVRG. Theoretical complexity guarantees under smoothness assumptions are presented. We prove linear convergence when both smoothness and the PL condition are assumed. Our adaptively scaled methods use approximate partial second-order curvature information and, therefore, can better mitigate the impact of badly scaled problems. This improved practical performance is demonstrated in the numerical experiments also presented in this work.


SONIA: A Symmetric Blockwise Truncated Optimization Algorithm

arXiv.org Machine Learning

This work presents a new algorithm for empirical risk minimization. The algorithm bridges the gap between first- and second-order methods by computing a search direction that uses a second-order-type update in one subspace, coupled with a scaled steepest descent step in the orthogonal complement. To this end, partial curvature information is incorporated to help with ill-conditioning, while simultaneously allowing the algorithm to scale to the large problem dimensions often encountered in machine learning applications. Theoretical results are presented to confirm that the algorithm converges to a stationary point in both the strongly convex and nonconvex cases. A stochastic variant of the algorithm is also presented, along with corresponding theoretical guarantees. Numerical results confirm the strengths of the new approach on standard machine learning problems.


Linear Convergence of the Randomized Feasible Descent Method Under the Weak Strong Convexity Assumption

arXiv.org Machine Learning

In this paper we generalize the framework of the feasible descent method (FDM) to a randomized (R-FDM) and a coordinate-wise random feasible descent method (RC-FDM) framework. We show that the famous SDCA algorithm for optimizing the SVM dual problem, or the stochastic coordinate descent method for the LASSO problem, fits into the framework of RC-FDM. We prove linear convergence for both R-FDM and RC-FDM under the weak strong convexity assumption. Moreover, we show that the duality gap converges linearly for RC-FDM, which implies that the duality gap also converges linearly for SDCA applied to the SVM dual problem.


Inexact Coordinate Descent: Complexity and Preconditioning

arXiv.org Artificial Intelligence

In this paper we consider the problem of minimizing a convex function using a randomized block coordinate descent method. One of the key steps at each iteration of the algorithm is determining the update to a block of variables. Existing algorithms assume that in order to compute the update, a particular subproblem is solved exactly. In his work we relax this requirement, and allow for the subproblem to be solved inexactly, leading to an inexact block coordinate descent method. Our approach incorporates the best known results for exact updates as a special case. Moreover, these theoretical guarantees are complemented by practical considerations: the use of iterative techniques to determine the update as well as the use of preconditioning for further acceleration.


Separable Approximations and Decomposition Methods for the Augmented Lagrangian

arXiv.org Machine Learning

In this paper we study decomposition methods based on separable approximations for minimizing the augmented Lagrangian. In particular, we study and compare the Diagonal Quadratic Approximation Method (DQAM) of Mulvey and Ruszczy\'{n}ski and the Parallel Coordinate Descent Method (PCDM) of Richt\'arik and Tak\'a\v{c}. We show that the two methods are equivalent for feasibility problems up to the selection of a single step-size parameter. Furthermore, we prove an improved complexity bound for PCDM under strong convexity, and show that this bound is at least $8(L'/\bar{L})(\omega-1)^2$ times better than the best known bound for DQAM, where $\omega$ is the degree of partial separability and $L'$ and $\bar{L}$ are the maximum and average of the block Lipschitz constants of the gradient of the quadratic penalty appearing in the augmented Lagrangian.