Tao, Meixia
SNR-EQ-JSCC: Joint Source-Channel Coding with SNR-Based Embedding and Query
Zhang, Hongwei, Tao, Meixia
Coping with the impact of dynamic channels is a critical issue in joint source-channel coding (JSCC)-based semantic communication systems. In this paper, we propose a lightweight channel-adaptive semantic coding architecture called SNR-EQ-JSCC. It is built upon the generic Transformer model and achieves channel adaptation (CA) by Embedding the signal-to-noise ratio (SNR) into the attention blocks and dynamically adjusting attention scores through channel-adaptive Queries. Meanwhile, penalty terms are introduced in the loss function to stabilize the training process. Considering that instantaneous SNR feedback may be imperfect, we propose an alternative method that uses only the average SNR, which requires no retraining of SNR-EQ-JSCC. Simulation results conducted on image transmission demonstrate that the proposed SNR-EQJSCC outperforms the state-of-the-art SwinJSCC in peak signal-to-noise ratio (PSNR) and perception metrics while only requiring 0.05% of the storage overhead and 6.38% of the computational complexity for CA. Moreover, the channel-adaptive query method demonstrates significant improvements in perception metrics. When instantaneous SNR feedback is imperfect, SNR-EQ-JSCC using only the average SNR still surpasses baseline schemes.
Overview of AI and Communication for 6G Network: Fundamentals, Challenges, and Future Research Opportunities
Cui, Qimei, You, Xiaohu, Ni, Wei, Nan, Guoshun, Zhang, Xuefei, Zhang, Jianhua, Lyu, Xinchen, Ai, Ming, Tao, Xiaofeng, Feng, Zhiyong, Zhang, Ping, Wu, Qingqing, Tao, Meixia, Huang, Yongming, Huang, Chongwen, Liu, Guangyi, Peng, Chenghui, Pan, Zhiwen, Sun, Tao, Niyato, Dusit, Chen, Tao, Khan, Muhammad Khurram, Jamalipour, Abbas, Guizani, Mohsen, Yuen, Chau
With the growing demand for seamless connectivity and intelligent communication, the integration of artificial intelligence (AI) and sixth-generation (6G) communication networks has emerged as a transformative paradigm. By embedding AI capabilities across various network layers, this integration enables optimized resource allocation, improved efficiency, and enhanced system robust performance, particularly in intricate and dynamic environments. This paper presents a comprehensive overview of AI and communication for 6G networks, with a focus on emphasizing their foundational principles, inherent challenges, and future research opportunities. We first review the integration of AI and communications in the context of 6G, exploring the driving factors behind incorporating AI into wireless communications, as well as the vision for the convergence of AI and 6G. The discourse then transitions to a detailed exposition of the envisioned integration of AI within 6G networks, delineated across three progressive developmental stages. The first stage, AI for Network, focuses on employing AI to augment network performance, optimize efficiency, and enhance user service experiences. The second stage, Network for AI, highlights the role of the network in facilitating and buttressing AI operations and presents key enabling technologies, such as digital twins for AI and semantic communication. In the final stage, AI as a Service, it is anticipated that future 6G networks will innately provide AI functions as services, supporting application scenarios like immersive communication and intelligent industrial robots. In addition, we conduct an in-depth analysis of the critical challenges faced by the integration of AI and communications in 6G. Finally, we outline promising future research opportunities that are expected to drive the development and refinement of AI and 6G communications.
Diffusion Model-Based Data Synthesis Aided Federated Semi-Supervised Learning
Wang, Zhongwei, Wu, Tong, Chen, Zhiyong, Qian, Liang, Xu, Yin, Tao, Meixia
Federated semi-supervised learning (FSSL) is primarily challenged by two factors: the scarcity of labeled data across clients and the non-independent and identically distribution (non-IID) nature of data among clients. In this paper, we propose a novel approach, diffusion model-based data synthesis aided FSSL (DDSA-FSSL), which utilizes a diffusion model (DM) to generate synthetic data, bridging the gap between heterogeneous local data distributions and the global data distribution. In DDSA-FSSL, clients address the challenge of the scarcity of labeled data by employing a federated learning-trained classifier to perform pseudo labeling for unlabeled data. The DM is then collaboratively trained using both labeled and precision-optimized pseudo-labeled data, enabling clients to generate synthetic samples for classes that are absent in their labeled datasets. This process allows clients to generate more comprehensive synthetic datasets aligned with the global distribution. Extensive experiments conducted on multiple datasets and varying non-IID distributions demonstrate the effectiveness of DDSA-FSSL, e.g., it improves accuracy from 38.46% to 52.14% on CIFAR-10 datasets with 10% labeled data.
WDMoE: Wireless Distributed Mixture of Experts for Large Language Models
Xue, Nan, Sun, Yaping, Chen, Zhiyong, Tao, Meixia, Xu, Xiaodong, Qian, Liang, Cui, Shuguang, Zhang, Wenjun, Zhang, Ping
Large Language Models (LLMs) have achieved significant success in various natural language processing tasks, but the role of wireless networks in supporting LLMs has not been thoroughly explored. In this paper, we propose a wireless distributed Mixture of Experts (WDMoE) architecture to enable collaborative deployment of LLMs across edge servers at the base station (BS) and mobile devices in wireless networks. Specifically, we decompose the MoE layer in LLMs by placing the gating network and the preceding neural network layer at BS, while distributing the expert networks among the devices. This deployment leverages the parallel inference capabilities of expert networks on mobile devices, effectively utilizing the limited computing and caching resources of these devices. Accordingly, we develop a performance metric for WDMoE-based LLMs, which accounts for both model capability and latency. To minimize the latency while maintaining accuracy, we jointly optimize expert selection and bandwidth allocation based on the performance metric. Moreover, we build a hardware testbed using NVIDIA Jetson kits to validate the effectiveness of WDMoE. Both theoretical simulations and practical hardware experiments demonstrate that the proposed method can significantly reduce the latency without compromising LLM performance.
Two Birds with One Stone: Multi-Task Semantic Communications Systems over Relay Channel
Cao, Yujie, Wu, Tong, Chen, Zhiyong, Xu, Yin, Tao, Meixia, Zhang, Wenjun
In this paper, we propose a novel multi-task, multi-link relay semantic communications (MTML-RSC) scheme that enables the destination node to simultaneously perform image reconstruction and classification with one transmission from the source node. In the MTML-RSC scheme, the source node broadcasts a signal using semantic communications, and the relay node forwards the signal to the destination. We analyze the coupling relationship between the two tasks and the two links (source-to-relay and source-to-destination) and design a semantic-focused forward method for the relay node, where it selectively forwards only the semantics of the relevant class while ignoring others. At the destination, the node combines signals from both the source node and the relay node to perform classification, and then uses the classification result to assist in decoding the signal from the relay node for image reconstructing. Experimental results demonstrate that the proposed MTML-RSC scheme achieves significant performance gains, e.g., $1.73$ dB improvement in peak-signal-to-noise ratio (PSNR) for image reconstruction and increasing the accuracy from $64.89\%$ to $70.31\%$ for classification.
MambaJSCC: Adaptive Deep Joint Source-Channel Coding with Generalized State Space Model
Wu, Tong, Chen, Zhiyong, Tao, Meixia, Sun, Yaping, Xu, Xiaodong, Zhang, Wenjun, Zhang, Ping
Lightweight and efficient neural network models for deep joint source-channel coding (JSCC) are crucial for semantic communications. In this paper, we propose a novel JSCC architecture, named MambaJSCC, that achieves state-of-the-art performance with low computational and parameter overhead. MambaJSCC utilizes the visual state space model with channel adaptation (VSSM-CA) blocks as its backbone for transmitting images over wireless channels, where the VSSM-CA primarily consists of the generalized state space models (GSSM) and the zero-parameter, zero-computational channel adaptation method (CSI-ReST). We design the GSSM module, leveraging reversible matrix transformations to express generalized scan expanding operations, and theoretically prove that two GSSM modules can effectively capture global information. We discover that GSSM inherently possesses the ability to adapt to channels, a form of endogenous intelligence. Based on this, we design the CSI-ReST method, which injects channel state information (CSI) into the initial state of GSSM to utilize its native response, and into the residual state to mitigate CSI forgetting, enabling effective channel adaptation without introducing additional computational and parameter overhead. Experimental results show that MambaJSCC not only outperforms existing JSCC methods (e.g., SwinJSCC) across various scenarios but also significantly reduces parameter size, computational overhead, and inference delay.
Multi-User Semantic Fusion for Semantic Communications over Degraded Broadcast Channels
Wu, Tong, Chen, Zhiyong, Tao, Meixia, Xia, Bin, Zhang, Wenjun
Degraded broadcast channels (DBC) are a typical multiuser communication scenario, Semantic communications over DBC still lack in-depth research. In this paper, we design a semantic communications approach based on multi-user semantic fusion for wireless image transmission over DBC. In the proposed method, the transmitter extracts semantic features for two users separately. It then effectively fuses these semantic features for broadcasting by leveraging semantic similarity. Unlike traditional allocation of time, power, or bandwidth, the semantic fusion scheme can dynamically control the weight of the semantic features of the two users to balance the performance between the two users. Considering the different channel state information (CSI) of both users over DBC, a DBC-Aware method is developed that embeds the CSI of both users into the joint source-channel coding encoder and fusion module to adapt to the channel. Experimental results show that the proposed system outperforms the traditional broadcasting schemes.
WDMoE: Wireless Distributed Large Language Models with Mixture of Experts
Xue, Nan, Sun, Yaping, Chen, Zhiyong, Tao, Meixia, Xu, Xiaodong, Qian, Liang, Cui, Shuguang, Zhang, Ping
Large Language Models (LLMs) have achieved significant success in various natural language processing tasks, but how wireless communications can support LLMs has not been extensively studied. In this paper, we propose a wireless distributed LLMs paradigm based on Mixture of Experts (MoE), named WDMoE, deploying LLMs collaboratively across edge servers of base station (BS) and mobile devices in the wireless communications system. Specifically, we decompose the MoE layer in LLMs by deploying the gating network and the preceding neural network layer at BS, while distributing the expert networks across the devices. This arrangement leverages the parallel capabilities of expert networks on distributed devices. Moreover, to overcome the instability of wireless communications, we design an expert selection policy by taking into account both the performance of the model and the end-to-end latency, which includes both transmission delay and inference delay. Evaluations conducted across various LLMs and multiple datasets demonstrate that WDMoE not only outperforms existing models, such as Llama 2 with 70 billion parameters, but also significantly reduces end-to-end latency.
Vertical Federated Learning over Cloud-RAN: Convergence Analysis and System Optimization
Shi, Yuanming, Xia, Shuhao, Zhou, Yong, Mao, Yijie, Jiang, Chunxiao, Tao, Meixia
Vertical federated learning (FL) is a collaborative machine learning framework that enables devices to learn a global model from the feature-partition datasets without sharing local raw data. However, as the number of the local intermediate outputs is proportional to the training samples, it is critical to develop communication-efficient techniques for wireless vertical FL to support high-dimensional model aggregation with full device participation. In this paper, we propose a novel cloud radio access network (Cloud-RAN) based vertical FL system to enable fast and accurate model aggregation by leveraging over-the-air computation (AirComp) and alleviating communication straggler issue with cooperative model aggregation among geographically distributed edge servers. However, the model aggregation error caused by AirComp and quantization errors caused by the limited fronthaul capacity degrade the learning performance for vertical FL. To address these issues, we characterize the convergence behavior of the vertical FL algorithm considering both uplink and downlink transmissions. To improve the learning performance, we establish a system optimization framework by joint transceiver and fronthaul quantization design, for which successive convex approximation and alternate convex search based system optimization algorithms are developed. We conduct extensive simulations to demonstrate the effectiveness of the proposed system architecture and optimization framework for vertical FL.
Learning Based Joint Coding-Modulation for Digital Semantic Communication Systems
Bo, Yufei, Duan, Yiheng, Shao, Shuo, Tao, Meixia
In learning-based semantic communications, neural networks have replaced different building blocks in traditional communication systems. However, the digital modulation still remains a challenge for neural networks. The intrinsic mechanism of neural network based digital modulation is mapping continuous output of the neural network encoder into discrete constellation symbols, which is a non-differentiable function that cannot be trained with existing gradient descend algorithms. To overcome this challenge, in this paper we develop a joint coding-modulation scheme for digital semantic communications with BPSK modulation. In our method, the neural network outputs the likelihood of each constellation point, instead of having a concrete mapping. A random code rather than a deterministic code is hence used, which preserves more information for the symbols with a close likelihood on each constellation point. The joint coding-modulation design can match the modulation process with channel states, and hence improve the performance of digital semantic communications. Experiment results show that our method outperforms existing digital modulation methods in semantic communications over a wide range of SNR, and outperforms neural network based analog modulation method in low SNR regime.