Goto

Collaborating Authors

 Tao, Dacheng


Erasing Without Remembering: Safeguarding Knowledge Forgetting in Large Language Models

arXiv.org Artificial Intelligence

In this paper, we explore machine unlearning from a novel dimension, by studying how to safeguard model unlearning in large language models (LLMs). Our goal is to prevent unlearned models from recalling any related memory of the targeted knowledge.We begin by uncovering a surprisingly simple yet overlooked fact: existing methods typically erase only the exact expressions of the targeted knowledge, leaving paraphrased or related information intact. To rigorously measure such oversights, we introduce UGBench, the first benchmark tailored for evaluating the generalisation performance across 13 state-of-the-art methods.UGBench reveals that unlearned models can still recall paraphrased answers and retain target facts in intermediate layers. To address this, we propose PERMU, a perturbation-based method that significantly enhances the generalisation capabilities for safeguarding LLM unlearning.Experiments demonstrate that PERMU delivers up to a 50.13% improvement in unlearning while maintaining a 43.53% boost in robust generalisation. Our code can be found in https://github.com/MaybeLizzy/UGBench.


A Theoretical Perspective: How to Prevent Model Collapse in Self-consuming Training Loops

arXiv.org Artificial Intelligence

High-quality data is essential for training large generative models, yet the vast reservoir of real data available online has become nearly depleted. Consequently, models increasingly generate their own data for further training, forming Self-consuming Training Loops (STLs). However, the empirical results have been strikingly inconsistent: some models degrade or even collapse, while others successfully avoid these failures, leaving a significant gap in theoretical understanding to explain this discrepancy. This paper introduces the intriguing notion of recursive stability and presents the first theoretical generalization analysis, revealing how both model architecture and the proportion between real and synthetic data influence the success of STLs. We further extend this analysis to transformers in in-context learning, showing that even a constant-sized proportion of real data ensures convergence, while also providing insights into optimal synthetic data sizing.


ELBA-Bench: An Efficient Learning Backdoor Attacks Benchmark for Large Language Models

arXiv.org Artificial Intelligence

Generative large language models are crucial in natural language processing, but they are vulnerable to backdoor attacks, where subtle triggers compromise their behavior. Although backdoor attacks against LLMs are constantly emerging, existing benchmarks remain limited in terms of sufficient coverage of attack, metric system integrity, backdoor attack alignment. And existing pre-trained backdoor attacks are idealized in practice due to resource access constraints. Therefore we establish $\textit{ELBA-Bench}$, a comprehensive and unified framework that allows attackers to inject backdoor through parameter efficient fine-tuning ($\textit{e.g.,}$ LoRA) or without fine-tuning techniques ($\textit{e.g.,}$ In-context-learning). $\textit{ELBA-Bench}$ provides over 1300 experiments encompassing the implementations of 12 attack methods, 18 datasets, and 12 LLMs. Extensive experiments provide new invaluable findings into the strengths and limitations of various attack strategies. For instance, PEFT attack consistently outperform without fine-tuning approaches in classification tasks while showing strong cross-dataset generalization with optimized triggers boosting robustness; Task-relevant backdoor optimization techniques or attack prompts along with clean and adversarial demonstrations can enhance backdoor attack success while preserving model performance on clean samples. Additionally, we introduce a universal toolbox designed for standardized backdoor attack research, with the goal of propelling further progress in this vital area.


Edit Once, Update Everywhere: A Simple Framework for Cross-Lingual Knowledge Synchronization in LLMs

arXiv.org Artificial Intelligence

Knowledge editing allows for efficient adaptation of large language models (LLMs) to new information or corrections without requiring full retraining. However, prior methods typically focus on either single-language editing or basic multilingual editing, failing to achieve true cross-linguistic knowledge synchronization. To address this, we present a simple and practical state-of-the-art (SOTA) recipe Cross-Lingual Knowledge Democracy Edit (X-KDE), designed to propagate knowledge from a dominant language to other languages effectively. Our X-KDE comprises two stages: (i) Cross-lingual Edition Instruction Tuning (XE-IT), which fine-tunes the model on a curated parallel dataset to modify in-scope knowledge while preserving unrelated information, and (ii) Target-language Preference Optimization (TL-PO), which applies advanced optimization techniques to ensure consistency across languages, fostering the transfer of updates. Additionally, we contribute a high-quality, cross-lingual dataset, specifically designed to enhance knowledge transfer across languages. Extensive experiments on the Bi-ZsRE and MzsRE benchmarks show that X-KDE significantly enhances cross-lingual performance, achieving an average improvement of +8.19%, while maintaining high accuracy in monolingual settings.


Enhancing Input-Label Mapping in In-Context Learning with Contrastive Decoding

arXiv.org Artificial Intelligence

Large language models (LLMs) excel at a range of tasks through in-context learning (ICL), where only a few task examples guide their predictions. However, prior research highlights that LLMs often overlook input-label mapping information in ICL, relying more on their pre-trained knowledge. To address this issue, we introduce In-Context Contrastive Decoding (ICCD), a novel method that emphasizes input-label mapping by contrasting the output distributions between positive and negative in-context examples. Experiments on 7 natural language understanding (NLU) tasks show that our ICCD method brings consistent and significant improvement (up to +2.1 improvement on average) upon 6 different scales of LLMs without requiring additional training. Our approach is versatile, enhancing performance with various demonstration selection methods, demonstrating its broad applicability and effectiveness. The code and scripts will be publicly released.


Reasoning with Reinforced Functional Token Tuning

arXiv.org Artificial Intelligence

In this work, we propose Reinforced Functional Token Tuning (RFTT), a novel reinforced fine-tuning framework that empowers Large Language Models (LLMs) with self-play learn-to-reason capabilities. Unlike prior prompt-driven reasoning efforts, RFTT embeds a rich set of learnable functional tokens (e.g., , , ) directly into the model vocabulary, enabling chain-of-thought construction with diverse human-like reasoning behaviors. Specifically, RFTT comprises two phases: (1) supervised fine-tuning performs prompt-driven tree search to obtain self-generated training data annotated with functional tokens, which warms up the model to learn these tokens for reasoning; and (2) online reinforcement learning further allows the model to explore different reasoning pathways through functional token sampling without relying on prompts, thereby facilitating effective self-improvement for functional reasoning. Extensive experiments demonstrate the superiority of the proposed RFTT on mathematical benchmarks, significantly boosting Qwen-2.5-7B-Instruct (70.6% to 79.8%) and LLaMA-3.1-8B-Instruct (32.2% to 60.2%) on the MATH dataset. Moreover, the performance of RFTT consistently improves with more search rollouts at inference time. Our code is available at https://github.com/sastpg/RFTT.


HRP: High-Rank Preheating for Superior LoRA Initialization

arXiv.org Artificial Intelligence

This paper studies the crucial impact of initialization on the convergence properties of Low-Rank Adaptation (LoRA). We theoretically demonstrate that random initialization, a widely used schema, will likely lead LoRA to random low-rank results, rather than the best low-rank result. While this issue can be mitigated by adjusting initialization towards a well-informed direction, it relies on prior knowledge of the target, which is typically unknown in real-world scenarios. To approximate this well-informed initial direction, we propose High-Rank Preheating (HRP), which fine-tunes high-rank LoRA for a few steps and uses the singular value decomposition of the preheated result as a superior initialization. HRP initialization is theory-supported to combine the convergence strengths of high-rank LoRA and the generalization strengths of low-rank LoRA. Extensive experiments demonstrate that HRP significantly enhances LoRA's effectiveness across various models and tasks, achieving performance comparable to full-parameter fine-tuning and outperforming other initialization strategies.


Reasoning-Augmented Conversation for Multi-Turn Jailbreak Attacks on Large Language Models

arXiv.org Artificial Intelligence

Multi-turn jailbreak attacks simulate real-world human interactions by engaging large language models (LLMs) in iterative dialogues, exposing critical safety vulnerabilities. However, existing methods often struggle to balance semantic coherence with attack effectiveness, resulting in either benign semantic drift or ineffective detection evasion. To address this challenge, we propose Reasoning-Augmented Conversation, a novel multi-turn jailbreak framework that reformulates harmful queries into benign reasoning tasks and leverages LLMs' strong reasoning capabilities to compromise safety alignment. Specifically, we introduce an attack state machine framework to systematically model problem translation and iterative reasoning, ensuring coherent query generation across multiple turns. Building on this framework, we design gain-guided exploration, self-play, and rejection feedback modules to preserve attack semantics, enhance effectiveness, and sustain reasoning-driven attack progression. Extensive experiments on multiple LLMs demonstrate that RACE achieves state-of-the-art attack effectiveness in complex conversational scenarios, with attack success rates (ASRs) increasing by up to 96%. Notably, our approach achieves ASRs of 82% and 92% against leading commercial models, OpenAI o1 and DeepSeek R1, underscoring its potency. We release our code at https://github.com/NY1024/RACE to facilitate further research in this critical domain.


SeWA: Selective Weight Average via Probabilistic Masking

arXiv.org Artificial Intelligence

Weight averaging has become a standard technique for enhancing model performance. However, methods such as Stochastic Weight Averaging (SWA) and Latest Weight Averaging (LAWA) often require manually designed procedures to sample from the training trajectory, and the results depend heavily on hyperparameter tuning. To minimize human effort, this paper proposes a simple yet efficient algorithm called Selective Weight Averaging (SeWA), which adaptively selects checkpoints during the final stages of training for averaging. Based on SeWA, we show that only a few points are needed to achieve better generalization and faster convergence. Theoretically, solving the discrete subset selection problem is inherently challenging. To address this, we transform it into a continuous probabilistic optimization framework and employ the Gumbel-Softmax estimator to learn the non-differentiable mask for each checkpoint. Further, we theoretically derive the SeWA's stability-based generalization bounds, which are sharper than that of SGD under both convex and non-convex assumptions. Finally, solid extended experiments in various domains, including behavior cloning, image classification, and text classification, further validate the effectiveness of our approach.


Safety at Scale: A Comprehensive Survey of Large Model Safety

arXiv.org Artificial Intelligence

The rapid advancement of large models, driven by their exceptional abilities in learning and generalization through large-scale pre-training, has reshaped the landscape of Artificial Intelligence (AI). These models are now foundational to a wide range of applications, including conversational AI, recommendation systems, autonomous driving, content generation, medical diagnostics, and scientific discovery. However, their widespread deployment also exposes them to significant safety risks, raising concerns about robustness, reliability, and ethical implications. This survey provides a systematic review of current safety research on large models, covering Vision Foundation Models (VFMs), Large Language Models (LLMs), Vision-Language Pre-training (VLP) models, Vision-Language Models (VLMs), Diffusion Models (DMs), and large-model-based Agents. Our contributions are summarized as follows: (1) We present a comprehensive taxonomy of safety threats to these models, including adversarial attacks, data poisoning, backdoor attacks, jailbreak and prompt injection attacks, energy-latency attacks, data and model extraction attacks, and emerging agent-specific threats. (2) We review defense strategies proposed for each type of attacks if available and summarize the commonly used datasets and benchmarks for safety research. (3) Building on this, we identify and discuss the open challenges in large model safety, emphasizing the need for comprehensive safety evaluations, scalable and effective defense mechanisms, and sustainable data practices. More importantly, we highlight the necessity of collective efforts from the research community and international collaboration. Our work can serve as a useful reference for researchers and practitioners, fostering the ongoing development of comprehensive defense systems and platforms to safeguard AI models.