Tanielian, Ugo
AdBooster: Personalized Ad Creative Generation using Stable Diffusion Outpainting
Shilova, Veronika, Santos, Ludovic Dos, Vasile, Flavian, Racic, Gaëtan, Tanielian, Ugo
In digital advertising, the selection of the optimal item (recommendation) and its best creative presentation (creative optimization) have traditionally been considered separate disciplines. However, both contribute significantly to user satisfaction, underpinning our assumption that it relies on both an item's relevance and its presentation, particularly in the case of visual creatives. In response, we introduce the task of {\itshape Generative Creative Optimization (GCO)}, which proposes the use of generative models for creative generation that incorporate user interests, and {\itshape AdBooster}, a model for personalized ad creatives based on the Stable Diffusion outpainting architecture. This model uniquely incorporates user interests both during fine-tuning and at generation time. To further improve AdBooster's performance, we also introduce an automated data augmentation pipeline. Through our experiments on simulated data, we validate AdBooster's effectiveness in generating more relevant creatives than default product images, showing its potential of enhancing user engagement.
Unveiling the Latent Space Geometry of Push-Forward Generative Models
Issenhuth, Thibaut, Tanielian, Ugo, Mary, Jérémie, Picard, David
Many deep generative models are defined as a push-forward of a Gaussian measure by a continuous generator, such as Generative Adversarial Networks (GANs) or Variational Auto-Encoders (VAEs). This work explores the latent space of such deep generative models. A key issue with these models is their tendency to output samples outside of the support of the target distribution when learning disconnected distributions. We investigate the relationship between the performance of these models and the geometry of their latent space. Building on recent developments in geometric measure theory, we prove a sufficient condition for optimality in the case where the dimension of the latent space is larger than the number of modes. Through experiments on GANs, we demonstrate the validity of our theoretical results and gain new insights into the latent space geometry of these models. Additionally, we propose a truncation method that enforces a simplicial cluster structure in the latent space and improves the performance of GANs.
Optimal 1-Wasserstein Distance for WGANs
Stéphanovitch, Arthur, Tanielian, Ugo, Cadre, Benoît, Klutchnikoff, Nicolas, Biau, Gérard
The mathematical forces at work behind Generative Adversarial Networks raise challenging theoretical issues. Motivated by the important question of characterizing the geometrical properties of the generated distributions, we provide a thorough analysis of Wasserstein GANs (WGANs) in both the finite sample and asymptotic regimes. We study the specific case where the latent space is univariate and derive results valid regardless of the dimension of the output space. We show in particular that for a fixed sample size, the optimal WGANs are closely linked with connected paths minimizing the sum of the squared Euclidean distances between the sample points. We also highlight the fact that WGANs are able to approach (for the 1-Wasserstein distance) the target distribution as the sample size tends to infinity, at a given convergence rate and provided the family of generative Lipschitz functions grows appropriately. We derive in passing new results on optimal transport theory in the semi-discrete setting.
Learning disconnected manifolds: a no GANs land
Tanielian, Ugo, Issenhuth, Thibaut, Dohmatob, Elvis, Mary, Jeremie
Typical architectures of Generative AdversarialNetworks make use of a unimodal latent distribution transformed by a continuous generator. Consequently, the modeled distribution always has connected support which is cumbersome when learning a disconnected set of manifolds. We formalize this problem by establishing a no free lunch theorem for the disconnected manifold learning stating an upper bound on the precision of the targeted distribution. This is done by building on the necessary existence of a low-quality region where the generator continuously samples data between two disconnected modes. Finally, we derive a rejection sampling method based on the norm of generators Jacobian and show its efficiency on several generators including BigGAN.
Approximating Lipschitz continuous functions with GroupSort neural networks
Tanielian, Ugo, Sangnier, Maxime, Biau, Gerard
Recent advances in adversarial attacks and Wasserstein GANs have advocated for use of neural networks with restricted Lipschitz constants. Motivated by these observations, we study the recently introduced GroupSort neural networks, with constraints on the weights, and make a theoretical step towards a better understanding of their expressive power. We show in particular how these networks can represent any Lipschitz continuous piecewise linear functions. We also prove that they are well-suited for approximating Lipschitz continuous functions and exhibit upper bounds on both the depth and size. To conclude, the efficiency of GroupSort networks compared with more standard ReLU networks is illustrated in a set of synthetic experiments.
Some Theoretical Insights into Wasserstein GANs
Biau, Gérard, Sangnier, Maxime, Tanielian, Ugo
Generative Adversarial Networks (GANs) have been successful in producing outstanding results in areas as diverse as image, video, and text generation. Building on these successes, a large number of empirical studies have validated the benefits of the cousin approach called Wasserstein GANs (WGANs), which brings stabilization in the training process. In the present paper, we add a new stone to the edifice by proposing some theoretical advances in the properties of WGANs. First, we properly define the architecture of WGANs in the context of integral probability metrics parameterized by neural networks and highlight some of their basic mathematical features. We stress in particular interesting optimization properties arising from the use of a parametric 1-Lipschitz discriminator. Then, in a statistically-driven approach, we study the convergence of empirical WGANs as the sample size tends to infinity, and clarify the adversarial effects of the generator and the discrimi-nator by underlining some trade-off properties. These features are finally illustrated with experiments using both synthetic and real-world datasets.
Relaxed Softmax for learning from Positive and Unlabeled data
Tanielian, Ugo, Vasile, Flavian
In recent years, the softmax model and its fast approximations have become the de-facto loss functions for deep neural networks when dealing with multi-class prediction. This loss has been extended to language modeling and recommendation, two fields that fall into the framework of learning from Positive and Unlabeled data. In this paper, we stress the different drawbacks of the current family of softmax losses and sampling schemes when applied in a Positive and Unlabeled learning setup. We propose both a Relaxed Softmax loss (RS) and a new negative sampling scheme based on Boltzmann formulation. We show that the new training objective is better suited for the tasks of density estimation, item similarity and next-event prediction by driving uplifts in performance on textual and recommendation datasets against classical softmax.
Distributionally Robust Counterfactual Risk Minimization
Faury, Louis, Tanielian, Ugo, Vasile, Flavian, Smirnova, Elena, Dohmatob, Elvis
This manuscript introduces the idea of using Distributionally Robust Optimization (DRO) for the Counterfactual Risk Minimization (CRM) problem. Tapping into a rich existing literature, we show that DRO is a principled tool for counterfactual decision making. We also show that well-established solutions to the CRM problem like sample variance penalization schemes are special instances of a more general DRO problem. In this unifying framework, a variety of distributionally robust counterfactual risk estimators can be constructed using various probability distances and divergences as uncertainty measures. We propose the use of Kullback-Leibler divergence as an alternative way to model uncertainty in CRM and derive a new robust counterfactual objective. In our experiments, we show that this approach outperforms the state-of-the-art on four benchmark datasets, validating the relevance of using other uncertainty measures in practical applications.
Adversarial Training of Word2Vec for Basket Completion
Tanielian, Ugo, Gartrell, Mike, Vasile, Flavian
In recent years, the Word2Vec model trained with the Negative Sampling loss function has shown state-of-the-art results in a number of machine learning tasks, including language modeling tasks, such as word analogy and word similarity, and in recommendation tasks, through Prod2Vec, an extension that applies to modeling user shopping activity and user preferences. Several methods that aim to improve upon the standard Negative Sampling loss have been proposed. In our paper we pursue more sophisticated Negative Sampling, by leveraging ideas from the field of Generative Adversarial Networks (GANs), and propose Adversarial Negative Sampling. We build upon the recent progress made in stabilizing the training objective of GANs in the discrete data setting, and introduce a new GAN-Word2Vec model.We evaluate our model on the task of basket completion, and show significant improvements in performance over Word2Vec trained using standard loss functions, including Noise Contrastive Estimation and Negative Sampling.