Tang, Zhi
Enhancing Graph Representation Learning with Localized Topological Features
Yan, Zuoyu, Zhao, Qi, Ye, Ze, Ma, Tengfei, Gao, Liangcai, Tang, Zhi, Wang, Yusu, Chen, Chao
Representation learning on graphs is a fundamental problem that can be crucial in various tasks. Graph neural networks, the dominant approach for graph representation learning, are limited in their representation power. Therefore, it can be beneficial to explicitly extract and incorporate high-order topological and geometric information into these models. In this paper, we propose a principled approach to extract the rich connectivity information of graphs based on the theory of persistent homology. Our method utilizes the topological features to enhance the representation learning of graph neural networks and achieve state-of-the-art performance on various node classification and link prediction benchmarks. We also explore the option of end-to-end learning of the topological features, i.e., treating topological computation as a differentiable operator during learning. Our theoretical analysis and empirical study provide insights and potential guidelines for employing topological features in graph learning tasks.
Cycle Invariant Positional Encoding for Graph Representation Learning
Yan, Zuoyu, Ma, Tengfei, Gao, Liangcai, Tang, Zhi, Chen, Chao, Wang, Yusu
Cycles are fundamental elements in graph-structured data and have demonstrated their effectiveness in enhancing graph learning models. To encode such information into a graph learning framework, prior works often extract a summary quantity, ranging from the number of cycles to the more sophisticated persistence diagram summaries. However, more detailed information, such as which edges are encoded in a cycle, has not yet been used in graph neural networks. In this paper, we make one step towards addressing this gap, and propose a structure encoding module, called CycleNet, that encodes cycle information via edge structure encoding in a permutation invariant manner. To efficiently encode the space of all cycles, we start with a cycle basis (i.e., a minimal set of cycles generating the cycle space) which we compute via the kernel of the 1-dimensional Hodge Laplacian of the input graph. To guarantee the encoding is invariant w.r.t. the choice of cycle basis, we encode the cycle information via the orthogonal projector of the cycle basis, which is inspired by BasisNet proposed by Lim et al. We also develop a more efficient variant which however requires that the input graph has a unique shortest cycle basis. To demonstrate the effectiveness of the proposed module, we provide some theoretical understandings of its expressive power. Moreover, we show via a range of experiments that networks enhanced by our CycleNet module perform better in various benchmarks compared to several existing SOTA models.
Efficiently Counting Substructures by Subgraph GNNs without Running GNN on Subgraphs
Yan, Zuoyu, Zhou, Junru, Gao, Liangcai, Tang, Zhi, Zhang, Muhan
Using graph neural networks (GNNs) to approximate specific functions such as counting graph substructures is a recent trend in graph learning. Among these works, a popular way is to use subgraph GNNs, which decompose the input graph into a collection of subgraphs and enhance the representation of the graph by applying GNN to individual subgraphs. Although subgraph GNNs are able to count complicated substructures, they suffer from high computational and memory costs. In this paper, we address a non-trivial question: can we count substructures efficiently with GNNs? To answer the question, we first theoretically show that the distance to the rooted nodes within subgraphs is key to boosting the counting power of subgraph GNNs. We then encode such information into structural embeddings, and precompute the embeddings to avoid extracting information over all subgraphs via GNNs repeatedly. Experiments on various benchmarks show that the proposed model can preserve the counting power of subgraph GNNs while running orders of magnitude faster.
CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes
Huang, Hao, Wang, Yongtao, Chen, Zhaoyu, Li, Yuheng, Tang, Zhi, Chu, Wei, Chen, Jingdong, Lin, Weisi, Ma, Kai-Kuang
Malicious application of deepfakes (i.e., technologies can generate target faces or face attributes) has posed a huge threat to our society. The fake multimedia content generated by deepfake models can harm the reputation and even threaten the property of the person who has been impersonated. Fortunately, the adversarial watermark could be used for combating deepfake models, leading them to generate distorted images. The existing methods require an individual training process for every facial image, to generate the adversarial watermark against a specific deepfake model, which are extremely inefficient. To address this problem, we propose a universal adversarial attack method on deepfake models, to generate a Cross-Model Universal Adversarial Watermark (CMUA-Watermark) that can protect thousands of facial images from multiple deepfake models. Specifically, we first propose a cross-model universal attack pipeline by attacking multiple deepfake models and combining gradients from these models iteratively. Then we introduce a batch-based method to alleviate the conflict of adversarial watermarks generated by different facial images. Finally, we design a more reasonable and comprehensive evaluation method for evaluating the effectiveness of the adversarial watermark. Experimental results demonstrate that the proposed CMUA-Watermark can effectively distort the fake facial images generated by deepfake models and successfully protect facial images from deepfakes in real scenes.
MathBERT: A Pre-Trained Model for Mathematical Formula Understanding
Peng, Shuai, Yuan, Ke, Gao, Liangcai, Tang, Zhi
Large-scale pre-trained models like BERT, have obtained a great success in various Natural Language Processing (NLP) tasks, while it is still a challenge to adapt them to the math-related tasks. Current pre-trained models neglect the structural features and the semantic correspondence between formula and its context. To address these issues, we propose a novel pre-trained model, namely \textbf{MathBERT}, which is jointly trained with mathematical formulas and their corresponding contexts. In addition, in order to further capture the semantic-level structural features of formulas, a new pre-training task is designed to predict the masked formula substructures extracted from the Operator Tree (OPT), which is the semantic structural representation of formulas. We conduct various experiments on three downstream tasks to evaluate the performance of MathBERT, including mathematical information retrieval, formula topic classification and formula headline generation. Experimental results demonstrate that MathBERT significantly outperforms existing methods on all those three tasks. Moreover, we qualitatively show that this pre-trained model effectively captures the semantic-level structural information of formulas. To the best of our knowledge, MathBERT is the first pre-trained model for mathematical formula understanding.
RPATTACK: Refined Patch Attack on General Object Detectors
Huang, Hao, Wang, Yongtao, Chen, Zhaoyu, Tang, Zhi, Zhang, Wenqiang, Ma, Kai-Kuang
Nowadays, general object detectors like YOLO and Faster R-CNN as well as their variants are widely exploited in many applications. Many works have revealed that these detectors are extremely vulnerable to adversarial patch attacks. The perturbed regions generated by previous patch-based attack works on object detectors are very large which are not necessary for attacking and perceptible for human eyes. To generate much less but more efficient perturbation, we propose a novel patch-based method for attacking general object detectors. Firstly, we propose a patch selection and refining scheme to find the pixels which have the greatest importance for attack and remove the inconsequential perturbations gradually. Then, for a stable ensemble attack, we balance the gradients of detectors to avoid over-optimizing one of them during the training phase. Our RPAttack can achieve an amazing missed detection rate of 100% for both Yolo v4 and Faster R-CNN while only modifies 0.32% pixels on VOC 2007 test set. Our code is available at https://github.com/VDIGPKU/RPAttack.
TGG: Transferable Graph Generation for Zero-shot and Few-shot Learning
Zhang, Chenrui, Lyu, Xiaoqing, Tang, Zhi
Zero-shot and few-shot learning aim to improve generalization to unseen concepts, which are promising in many realistic scenarios. Due to the lack of data in unseen domain, relation modeling between seen and unseen domains is vital for knowledge transfer in these tasks. Most existing methods capture seen-unseen relation implicitly via semantic embedding or feature generation, resulting in inadequate use of relation and some issues remain (e.g. domain shift). To tackle these challenges, we propose a Transferable Graph Generation (TGG) approach, in which the relation is modeled and utilized explicitly via graph generation. Specifically, our proposed TGG contains two main components: (1) Graph generation for relation modeling. An attention-based aggregate network and a relation kernel are proposed, which generate instance-level graph based on a class-level prototype graph and visual features. Proximity information aggregating is guided by a multi-head graph attention mechanism, where seen and unseen features synthesized by GAN are revised as node embeddings. The relation kernel further generates edges with GCN and graph kernel method, to capture instance-level topological structure while tackling data imbalance and noise. (2) Relation propagation for relation utilization. A dual relation propagation approach is proposed, where relations captured by the generated graph are separately propagated from the seen and unseen subgraphs. The two propagations learn from each other in a dual learning fashion, which performs as an adaptation way for mitigating domain shift. All components are jointly optimized with a meta-learning strategy, and our TGG acts as an end-to-end framework unifying conventional zero-shot, generalized zero-shot and few-shot learning. Extensive experiments demonstrate that it consistently surpasses existing methods of the above three fields by a significant margin.
Graph Attribute Aggregation Network with Progressive Margin Folding
Sun, Penghui, Qu, Jingwei, Lyu, Xiaoqing, Ling, Haibin, Tang, Zhi
Graph convolutional neural networks (GCNNs) have been attracting increasing research attention due to its great potential in inference over graph structures. However, insufficient effort has been devoted to the aggregation methods between different convolution graph layers. In this paper, we introduce a graph attribute aggregation network (GAAN) architecture. Different from the conventional pooling operations, a graph-transformation-based aggregation strategy, progressive margin folding, PMF, is proposed for integrating graph features. By distinguishing internal and margin elements, we provide an approach for implementing the folding iteratively. And a mechanism is also devised for preserving the local structures during progressively folding. In addition, a hypergraph-based representation is introduced for transferring the aggregated information between different layers. Our experiments applied to the public molecule datasets demonstrate that the proposed GAAN outperforms the existing GCNN models with significant effectiveness.
SReN: Shape Regression Network for Comic Storyboard Extraction
He, Zheqi (Peking University) | Zhou, Yafeng (Peking University) | Wang, Yongtao (Peking University) | Tang, Zhi (Peking University)
The goal of storyboard extraction is to decompose the comic image into several storyboards(or frames), which is the fundamental step of comic image understanding and producing digital comic documents suitable for mobile reading. Most of existing approaches are based on hand crafted low-level visual patters like edge segments and line segments, which do not capture high-level vision. To overcome shortcomings of the existing approaches, we propose a novel architecture based on deep convolutional neural network, namely Shape Regression Network(SReN), to detect storyboards within comic images. Firstly, we use Fast R-CNN to generate rectangle bounding boxes as storyboard proposals. Then we train a deep neural network to predict quadrangles for these propos- als. Unlike existing object detection methods which only output rectangle bounding boxes, SReN can produce more precise quadrangle bounding boxes. Experimental results, evaluating on 7382 comic pages, demonstrate that SReN outperforms the state-of-the-art methods by more than 10% in terms of F1-score and page correction rate.
Table Header Detection and Classification
Fang, Jing (Peking University) | Mitra, Prasenjit (The Pennsylvania State University) | Tang, Zhi (Peking University) | Giles, C. Lee (The Pennsylvania State University)
In digital libraries, a table, as a specific document component as well as a condensed way to present structured and relational data, contains rich information and often the only source of .that information. In order to explore, retrieve, and reuse that data, tables should be identified and the data extracted. Table recognition is an old field of research. However, due to the diversity of table styles, the results are still far from satisfactory, and not a single algorithm performs well on all different types of tables. In this paper, we randomly take samples from the CiteSeerX to investigate diverse table styles for automatic table extraction. We find that table headers are one of the main characteristics of complex table styles. We identify a set of features that can be used to segregate headers from tabular data and build a classifier to detect table headers. Our empirical evaluation on PDF documents shows that using a Random Forest classifier achieves an accuracy of 92%.