Goto

Collaborating Authors

 Tang, Yuxing


Mamba-3D as Masked Autoencoders for Accurate and Data-Efficient Analysis of Medical Ultrasound Videos

arXiv.org Artificial Intelligence

Ultrasound videos are an important form of clinical imaging data, and deep learning-based automated analysis can improve diagnostic accuracy and clinical efficiency. However, the scarcity of labeled data and the inherent challenges of video analysis have impeded the advancement of related methods. In this work, we introduce E-ViM$^3$, a data-efficient Vision Mamba network that preserves the 3D structure of video data, enhancing long-range dependencies and inductive biases to better model space-time correlations. With our design of Enclosure Global Tokens (EGT), the model captures and aggregates global features more effectively than competing methods. To further improve data efficiency, we employ masked video modeling for self-supervised pre-training, with the proposed Spatial-Temporal Chained (STC) masking strategy designed to adapt to various video scenarios. Experiments demonstrate that E-ViM$^3$ performs as the state-of-the-art in two high-level semantic analysis tasks across four datasets of varying sizes: EchoNet-Dynamic, CAMUS, MICCAI-BUV, and WHBUS. Furthermore, our model achieves competitive performance with limited labels, highlighting its potential impact on real-world clinical applications.


Close Yet Distinctive Domain Adaptation

arXiv.org Machine Learning

Domain adaptation is transfer learning which aims to generalize a learning model across training and testing data with different distributions. Most previous research tackle this problem in seeking a shared feature representation between source and target domains while reducing the mismatch of their data distributions. In this paper, we propose a close yet discriminative domain adaptation method, namely CDDA, which generates a latent feature representation with two interesting properties. First, the discrepancy between the source and target domain, measured in terms of both marginal and conditional probability distribution via Maximum Mean Discrepancy is minimized so as to attract two domains close to each other. More importantly, we also design a repulsive force term, which maximizes the distances between each label dependent sub-domain to all others so as to drag different class dependent sub-domains far away from each other and thereby increase the discriminative power of the adapted domain. Moreover, given the fact that the underlying data manifold could have complex geometric structure, we further propose the constraints of label smoothness and geometric structure consistency for label propagation. Extensive experiments are conducted on 36 cross-domain image classification tasks over four public datasets. The comprehensive results show that the proposed method consistently outperforms the state-of-the-art methods with significant margins.