Tang, Yi
Improve Decoding Factuality by Token-wise Cross Layer Entropy of Large Language Models
Wu, Jialiang, Shen, Yi, Liu, Sijia, Tang, Yi, Song, Sen, Wang, Xiaoyi, Cai, Longjun
Despite their impressive capacities, Large language models (LLMs) often struggle with the hallucination issue of generating inaccurate or fabricated content even when they possess correct knowledge. In this paper, we extend the exploration of the correlation between hidden-state prediction changes and output factuality into a deeper, token-wise level. Based on the insights , we propose cross-layer Entropy eNhanced Decoding (END), a decoding method that mitigates hallucinations without requiring extra training. END leverages inner probability changes across layers to individually quantify the factual knowledge required for each candidate token, and adjusts the final predicting distribution to prioritize tokens with higher factuality. Experiments on both hallucination and QA benchmarks demonstrate that END significantly enhances the truthfulness and informativeness of generated content while maintaining robust QA accuracy. Moreover, our work provides a deeper perspective on understanding the correlations between inherent knowledge and output factuality.
Deep Learning-Based Identification of Inconsistent Method Names: How Far Are We?
Wang, Taiming, Zhang, Yuxia, Jiang, Lin, Tang, Yi, Li, Guangjie, Liu, Hui
Concise and meaningful method names are crucial for program comprehension and maintenance. However, method names may become inconsistent with their corresponding implementations, causing confusion and errors. Several deep learning (DL)-based approaches have been proposed to identify such inconsistencies, with initial evaluations showing promising results. However, these evaluations typically use a balanced dataset, where the number of inconsistent and consistent names are equal. This setup, along with flawed dataset construction, leads to false positives, making reported performance less reliable in real-world scenarios, where most method names are consistent. In this paper, we present an empirical study that evaluates state-of-the-art DL-based methods for identifying inconsistent method names. We create a new benchmark by combining automatic identification from commit histories and manual developer inspections, reducing false positives. We evaluate five representative DL approaches (one retrieval-based and four generation-based) on this benchmark. Our results show that performance drops substantially when moving from the balanced dataset to the new benchmark. We further conduct quantitative and qualitative analyses to understand the strengths and weaknesses of the approaches. Retrieval-based methods perform well on simple methods and those with popular name sub-tokens but fail due to inefficient representation techniques. Generation-based methods struggle with inaccurate similarity calculations and immature name generation. Based on these findings, we propose improvements using contrastive learning and large language models (LLMs). Our study suggests that significant improvements are needed before these DL approaches can be effectively applied to real-world software systems.
Mitigating Social Bias in Large Language Models: A Multi-Objective Approach within a Multi-Agent Framework
Xu, Zhenjie, Chen, Wenqing, Tang, Yi, Li, Xuanying, Hu, Cheng, Chu, Zhixuan, Ren, Kui, Zheng, Zibin, Lu, Zhichao
Natural language processing (NLP) has seen remarkable advancements with the development of large language models (LLMs). Despite these advancements, LLMs often produce socially biased outputs. Recent studies have mainly addressed this problem by prompting LLMs to behave ethically, but this approach results in unacceptable performance degradation. In this paper, we propose a multi-objective approach within a multi-agent framework (MOMA) to mitigate social bias in LLMs without significantly compromising their performance. The key idea of MOMA involves deploying multiple agents to perform causal interventions on bias-related contents of the input questions, breaking the shortcut connection between these contents and the corresponding answers. Unlike traditional debiasing techniques leading to performance degradation, MOMA substantially reduces bias while maintaining accuracy in downstream tasks. Our experiments conducted on two datasets and two models demonstrate that MOMA reduces bias scores by up to 87.7%, with only a marginal performance degradation of up to 6.8% in the BBQ dataset. Additionally, it significantly enhances the multi-objective metric icat in the StereoSet dataset by up to 58.1%. Code will be made available at https://github.com/Cortantse/MOMA.
Generative Modeling with Explicit Memory
Tang, Yi, Sun, Peng, Cheng, Zhenglin, Lin, Tao
Recent studies indicate that the denoising process in deep generative diffusion models implicitly learns and memorizes semantic information from the data distribution. These findings suggest that capturing more complex data distributions requires larger neural networks, leading to a substantial increase in computational demands, which in turn become the primary bottleneck in both training and inference of diffusion models. To this end, we introduce \textbf{G}enerative \textbf{M}odeling with \textbf{E}xplicit \textbf{M}emory (GMem), leveraging an external memory bank in both training and sampling phases of diffusion models. This approach preserves semantic information from data distributions, reducing reliance on neural network capacity for learning and generalizing across diverse datasets. The results are significant: our GMem enhances both training, sampling efficiency, and generation quality. For instance, on ImageNet at $256 \times 256$ resolution, GMem accelerates SiT training by over $46.7\times$, achieving the performance of a SiT model trained for $7M$ steps in fewer than $150K$ steps. Compared to the most efficient existing method, REPA, GMem still offers a $16\times$ speedup, attaining an FID score of 5.75 within $250K$ steps, whereas REPA requires over $4M$ steps. Additionally, our method achieves state-of-the-art generation quality, with an FID score of {3.56} without classifier-free guidance on ImageNet $256\times256$. Our code is available at \url{https://github.com/LINs-lab/GMem}.
Continuous LWE
Bruna, Joan, Regev, Oded, Song, Min Jae, Tang, Yi
We introduce a continuous analogue of the Learning with Errors (LWE) problem, which we name CLWE. We give a polynomial-time quantum reduction from worst-case lattice problems to CLWE, showing that CLWE enjoys similar hardness guarantees to those of LWE. Alternatively, our result can also be seen as opening new avenues of (quantum) attacks on lattice problems. Our work resolves an open problem regarding the computational complexity of learning mixtures of Gaussians without separability assumptions (Diakonikolas 2016, Moitra 2018). As an additional motivation, (a slight variant of) CLWE was considered in the context of robust machine learning (Diakonikolas et al.~FOCS 2017), where hardness in the statistical query (SQ) model was shown; our work addresses the open question regarding its computational hardness (Bubeck et al.~ICML 2019).