Tang, Xueyan
Learning-Augmented Algorithms for the Bahncard Problem
Zhao, Hailiang, Tang, Xueyan, Chen, Peng, Deng, Shuiguang
In this paper, we study learning-augmented algorithms for the Bahncard problem. The Bahncard problem is a generalization of the ski-rental problem, where a traveler needs to irrevocably and repeatedly decide between a cheap short-term solution and an expensive long-term one with an unknown future. Even though the problem is canonical, only a primal-dual-based learning-augmented algorithm was explicitly designed for it. We develop a new learning-augmented algorithm, named PFSUM, that incorporates both history and short-term future to improve online decision making. We derive the competitive ratio of PFSUM as a function of the prediction error and conduct extensive experiments to show that PFSUM outperforms the primal-dual-based algorithm.
Revisiting Modified Greedy Algorithm for Monotone Submodular Maximization with a Knapsack Constraint
Tang, Jing, Tang, Xueyan, Lim, Andrew, Han, Kai, Li, Chongshou, Yuan, Junsong
Monotone submodular maximization with a knapsack constraint is NP-hard. Various approximation algorithms have been devised to address this optimization problem. In this paper, we revisit the widely known modified greedy algorithm. First, we show that this algorithm can achieve an approximation factor of $0.405$, which significantly improves the known factor of $0.357$ given by Wolsey or $(1-1/\mathrm{e})/2\approx 0.316$ given by Khuller et al. More importantly, our analysis uncovers a gap in Khuller et al.'s proof for the extensively mentioned approximation factor of $(1-1/\sqrt{\mathrm{e}})\approx 0.393$ in the literature to clarify a long time of misunderstanding on this issue. Second, we enhance the modified greedy algorithm to derive a data-dependent upper bound on the optimum. We empirically demonstrate the tightness of our upper bound with a real-world application. The bound enables us to obtain a data-dependent ratio typically much higher than $0.405$ between the solution value of the modified greedy algorithm and the optimum. It can also be used to significantly improve the efficiency of algorithms such as branch and bound.