Tang, Xuan
AI Governance InternationaL Evaluation Index (AGILE Index)
Zeng, Yi, Lu, Enmeng, Guan, Xin, Huangfu, Cunqing, Ruan, Zizhe, Younas, Ammar, Sun, Kang, Tang, Xuan, Wang, Yuwei, Suo, Hongjie, Liang, Dongqi, Han, Zhengqiang, Bao, Aorigele, Guo, Xiaoyang, Wang, Jin, Xie, Jiawei, Liang, Yao
The rapid advancement of Artificial Intelligence (AI) technology is profoundly transforming human society and concurrently presenting a series of ethical, legal, and social issues. The effective governance of AI has become a crucial global concern. Since 2022, the extensive deployment of generative AI, particularly large language models, marked a new phase in AI governance. Continuous efforts are being made by the international community in actively addressing the novel challenges posed by these AI developments. As consensus on international governance continues to be established and put into action, the practical importance of conducting a global assessment of the state of AI governance is progressively coming to light. In this context, we initiated the development of the AI Governance InternationaL Evaluation Index (AGILE Index). Adhering to the design principle, "the level of governance should match the level of development," the inaugural evaluation of the AGILE Index commences with an exploration of four foundational pillars: the development level of AI, the AI governance environment, the AI governance instruments, and the AI governance effectiveness. It covers 39 indicators across 18 dimensions to comprehensively assess the AI governance level of 14 representative countries globally. The index is utilized to delve into the status of AI governance to date in 14 countries for the first batch of evaluation. The aim is to depict the current state of AI governance in these countries through data scoring, assist them in identifying their governance stage and uncovering governance issues, and ultimately offer insights for the enhancement of their AI governance systems.
Dual-BEV Nav: Dual-layer BEV-based Heuristic Path Planning for Robotic Navigation in Unstructured Outdoor Environments
Zhang, Jianfeng, Dong, Hanlin, Yang, Jian, Liu, Jiahui, Huang, Shibo, Li, Ke, Tang, Xuan, Wei, Xian, You, Xiong
Path planning with strong environmental adaptability plays a crucial role in robotic navigation in unstructured outdoor environments, especially in the case of low-quality location and map information. The path planning ability of a robot depends on the identification of the traversability of global and local ground areas. In real-world scenarios, the complexity of outdoor open environments makes it difficult for robots to identify the traversability of ground areas that lack a clearly defined structure. Moreover, most existing methods have rarely analyzed the integration of local and global traversability identifications in unstructured outdoor scenarios. To address this problem, we propose a novel method, Dual-BEV Nav, first introducing Bird's Eye View (BEV) representations into local planning to generate high-quality traversable paths. Then, these paths are projected onto the global traversability map generated by the global BEV planning model to obtain the optimal waypoints. By integrating the traversability from both local and global BEV, we establish a dual-layer BEV heuristic planning paradigm, enabling long-distance navigation in unstructured outdoor environments. We test our approach through both public dataset evaluations and real-world robot deployments, yielding promising results. Compared to baselines, the Dual-BEV Nav improved temporal distance prediction accuracy by up to $18.7\%$. In the real-world deployment, under conditions significantly different from the training set and with notable occlusions in the global BEV, the Dual-BEV Nav successfully achieved a 65-meter-long outdoor navigation. Further analysis demonstrates that the local BEV representation significantly enhances the rationality of the planning, while the global BEV probability map ensures the robustness of the overall planning.
Hyperbolic Contrastive Learning for Hierarchical 3D Point Cloud Embedding
Liu, Yingjie, Zhang, Pengyu, He, Ziyao, Chen, Mingsong, Tang, Xuan, Wei, Xian
Hyperbolic spaces allow for more efficient modeling of complex, hierarchical structures, which is particularly beneficial in tasks involving multi-modal data. Although hyperbolic geometries have been proven effective for language-image pre-training, their capabilities to unify language, image, and 3D Point Cloud modalities are under-explored. We extend the 3D Point Cloud modality in hyperbolic multi-modal contrastive pre-training. Additionally, we explore the entailment, modality gap, and alignment regularizers for learning hierarchical 3D embeddings and facilitating the transfer of knowledge from both Text and Image modalities. These regularizers enable the learning of intra-modal hierarchy within each modality and inter-modal hierarchy across text, 2D images, and 3D Point Clouds. Experimental results demonstrate that our proposed training strategy yields an outstanding 3D Point Cloud encoder, and the obtained 3D Point Cloud hierarchical embeddings significantly improve performance on various downstream tasks.
Hyperbolic Graph Diffusion Model
Wen, Lingfeng, Tang, Xuan, Ouyang, Mingjie, Shen, Xiangxiang, Yang, Jian, Zhu, Daxin, Chen, Mingsong, Wei, Xian
Diffusion generative models (DMs) have achieved promising results in image and graph generation. However, real-world graphs, such as social networks, molecular graphs, and traffic graphs, generally share non-Euclidean topologies and hidden hierarchies. For example, the degree distributions of graphs are mostly power-law distributions. The current latent diffusion model embeds the hierarchical data in a Euclidean space, which leads to distortions and interferes with modeling the distribution. Instead, hyperbolic space has been found to be more suitable for capturing complex hierarchical structures due to its exponential growth property. In order to simultaneously utilize the data generation capabilities of diffusion models and the ability of hyperbolic embeddings to extract latent hierarchical distributions, we propose a novel graph generation method called, Hyperbolic Graph Diffusion Model (HGDM), which consists of an auto-encoder to encode nodes into successive hyperbolic embeddings, and a DM that operates in the hyperbolic latent space. HGDM captures the crucial graph structure distributions by constructing a hyperbolic potential node space that incorporates edge information. Extensive experiments show that HGDM achieves better performance in generic graph and molecule generation benchmarks, with a $48\%$ improvement in the quality of graph generation with highly hierarchical structures.
SmartPlay: A Benchmark for LLMs as Intelligent Agents
Wu, Yue, Tang, Xuan, Mitchell, Tom M., Li, Yuanzhi
Recent large language models (LLMs) have demonstrated great potential toward intelligent agents and next-gen automation, but there currently lacks a systematic benchmark for evaluating LLMs' abilities as agents. We introduce SmartPlay: both a challenging benchmark and a methodology for evaluating LLMs as agents. SmartPlay consists of 6 different games, including Rock-Paper-Scissors, Tower of Hanoi, Minecraft. Each game features a unique setting, providing up to 20 evaluation settings and infinite environment variations. Each game in SmartPlay uniquely challenges a subset of 9 important capabilities of an intelligent LLM agent, including reasoning with object dependencies, planning ahead, spatial reasoning, learning from history, and understanding randomness. The distinction between the set of capabilities each game test allows us to analyze each capability separately. SmartPlay serves not only as a rigorous testing ground for evaluating the overall performance of LLM agents but also as a road-map for identifying gaps in current methodologies. We release our benchmark at github.com/microsoft/SmartPlay
Continual Learning via Manifold Expansion Replay
Xu, Zihao, Tang, Xuan, Shi, Yufei, Zhang, Jianfeng, Yang, Jian, Chen, Mingsong, Wei, Xian
In continual learning, the learner learns multiple tasks in sequence, with data being acquired only once for each task. Catastrophic forgetting is a major challenge to continual learning. To reduce forgetting, some existing rehearsal-based methods use episodic memory to replay samples of previous tasks. However, in the process of knowledge integration when learning a new task, this strategy also suffers from catastrophic forgetting due to an imbalance between old and new knowledge. To address this problem, we propose a novel replay strategy called Manifold Expansion Replay (MaER). We argue that expanding the implicit manifold of the knowledge representation in the episodic memory helps to improve the robustness and expressiveness of the model. To this end, we propose a greedy strategy to keep increasing the diameter of the implicit manifold represented by the knowledge in the buffer during memory management. In addition, we introduce Wasserstein distance instead of cross entropy as distillation loss to preserve previous knowledge. With extensive experimental validation on MNIST, CIFAR10, CIFAR100, and TinyImageNet, we show that the proposed method significantly improves the accuracy in continual learning setup, outperforming the state of the arts.