Plotting

 Tang, Xing


Semantic Retrieval Augmented Contrastive Learning for Sequential Recommendation

arXiv.org Artificial Intelligence

Sequential recommendation aims to model user preferences based on historical behavior sequences, which is crucial for various online platforms. Data sparsity remains a significant challenge in this area as most users have limited interactions and many items receive little attention. To mitigate this issue, contrastive learning has been widely adopted. By constructing positive sample pairs from the data itself and maximizing their agreement in the embedding space,it can leverage available data more effectively. Constructing reasonable positive sample pairs is crucial for the success of contrastive learning. However, current approaches struggle to generate reliable positive pairs as they either rely on representations learned from inherently sparse collaborative signals or use random perturbations which introduce significant uncertainty. To address these limitations, we propose a novel approach named Semantic Retrieval Augmented Contrastive Learning (SRA-CL), which leverages semantic information to improve the reliability of contrastive samples. SRA-CL comprises two main components: (1) Cross-Sequence Contrastive Learning via User Semantic Retrieval, which utilizes large language models (LLMs) to understand diverse user preferences and retrieve semantically similar users to form reliable positive samples through a learnable sample synthesis method; and (2) Intra-Sequence Contrastive Learning via Item Semantic Retrieval, which employs LLMs to comprehend items and retrieve similar items to perform semantic-based item substitution, thereby creating semantically consistent augmented views for contrastive learning. SRA-CL is plug-and-play and can be integrated into standard sequential recommendation models. Extensive experiments on four public datasets demonstrate the effectiveness and generalizability of the proposed approach.


Fusion Matters: Learning Fusion in Deep Click-through Rate Prediction Models

arXiv.org Artificial Intelligence

The evolution of previous Click-Through Rate (CTR) models has mainly been driven by proposing complex components, whether shallow or deep, that are adept at modeling feature interactions. However, there has been less focus on improving fusion design. Instead, two naive solutions, stacked and parallel fusion, are commonly used. Both solutions rely on pre-determined fusion connections and fixed fusion operations. It has been repetitively observed that changes in fusion design may result in different performances, highlighting the critical role that fusion plays in CTR models. While there have been attempts to refine these basic fusion strategies, these efforts have often been constrained to specific settings or dependent on specific components. Neural architecture search has also been introduced to partially deal with fusion design, but it comes with limitations. The complexity of the search space can lead to inefficient and ineffective results. To bridge this gap, we introduce OptFusion, a method that automates the learning of fusion, encompassing both the connection learning and the operation selection. We have proposed a one-shot learning algorithm tackling these tasks concurrently. Our experiments are conducted over three large-scale datasets. Extensive experiments prove both the effectiveness and efficiency of OptFusion in improving CTR model performance. Our code implementation is available here\url{https://github.com/kexin-kxzhang/OptFusion}.


Comprehending Knowledge Graphs with Large Language Models for Recommender Systems

arXiv.org Artificial Intelligence

Recently, the introduction of knowledge graphs (KGs) has significantly advanced recommender systems by facilitating the discovery of potential associations between items. However, existing methods still face several limitations. First, most KGs suffer from missing facts or limited scopes. This can lead to biased knowledge representations, thereby constraining the model's performance. Second, existing methods typically convert textual information into IDs, resulting in the loss of natural semantic connections between different items. Third, existing methods struggle to capture high-order relationships in global KGs due to their inefficient layer-by-layer information propagation mechanisms, which are prone to introducing significant noise. To address these limitations, we propose a novel method called CoLaKG, which leverages large language models (LLMs) for knowledge-aware recommendation. The extensive world knowledge and remarkable reasoning capabilities of LLMs enable them to supplement KGs. Additionally, the strong text comprehension abilities of LLMs allow for a better understanding of semantic information. Based on this, we first extract subgraphs centered on each item from the KG and convert them into textual inputs for the LLM. The LLM then outputs its comprehension of these item-centered subgraphs, which are subsequently transformed into semantic embeddings. Furthermore, to utilize the global information of the KG, we construct an item-item graph using these semantic embeddings, which can directly capture higher-order associations between items. Both the semantic embeddings and the structural information from the item-item graph are effectively integrated into the recommendation model through our designed representation alignment and neighbor augmentation modules. Extensive experiments on four real-world datasets demonstrate the superiority of our method.


FedBAT: Communication-Efficient Federated Learning via Learnable Binarization

arXiv.org Artificial Intelligence

Federated learning is a promising distributed machine learning paradigm that can effectively exploit large-scale data without exposing users' privacy. However, it may incur significant communication overhead, thereby potentially impairing the training efficiency. To address this challenge, numerous studies suggest binarizing the model updates. Nonetheless, traditional methods usually binarize model updates in a post-training manner, resulting in significant approximation errors and consequent degradation in model accuracy. To this end, we propose Federated Binarization-Aware Training (FedBAT), a novel framework that directly learns binary model updates during the local training process, thus inherently reducing the approximation errors. FedBAT incorporates an innovative binarization operator, along with meticulously designed derivatives to facilitate efficient learning. In addition, we establish theoretical guarantees regarding the convergence of FedBAT. Extensive experiments are conducted on four popular datasets. The results show that FedBAT significantly accelerates the convergence and exceeds the accuracy of baselines by up to 9\%, even surpassing that of FedAvg in some cases.


Rankability-enhanced Revenue Uplift Modeling Framework for Online Marketing

arXiv.org Artificial Intelligence

Uplift modeling has been widely employed in online marketing by predicting the response difference between the treatment and control groups, so as to identify the sensitive individuals toward interventions like coupons or discounts. Compared with traditional \textit{conversion uplift modeling}, \textit{revenue uplift modeling} exhibits higher potential due to its direct connection with the corporate income. However, previous works can hardly handle the continuous long-tail response distribution in revenue uplift modeling. Moreover, they have neglected to optimize the uplift ranking among different individuals, which is actually the core of uplift modeling. To address such issues, in this paper, we first utilize the zero-inflated lognormal (ZILN) loss to regress the responses and customize the corresponding modeling network, which can be adapted to different existing uplift models. Then, we study the ranking-related uplift modeling error from the theoretical perspective and propose two tighter error bounds as the additional loss terms to the conventional response regression loss. Finally, we directly model the uplift ranking error for the entire population with a listwise uplift ranking loss. The experiment results on offline public and industrial datasets validate the effectiveness of our method for revenue uplift modeling. Furthermore, we conduct large-scale experiments on a prominent online fintech marketing platform, Tencent FiT, which further demonstrates the superiority of our method in real-world applications.


Benchmarking for Deep Uplift Modeling in Online Marketing

arXiv.org Artificial Intelligence

Online marketing is critical for many industrial platforms and business applications, aiming to increase user engagement and platform revenue by identifying corresponding delivery-sensitive groups for specific incentives, such as coupons and bonuses. As the scale and complexity of features in industrial scenarios increase, deep uplift modeling (DUM) as a promising technique has attracted increased research from academia and industry, resulting in various predictive models. However, current DUM still lacks some standardized benchmarks and unified evaluation protocols, which limit the reproducibility of experimental results in existing studies and the practical value and potential impact in this direction. In this paper, we provide an open benchmark for DUM and present comparison results of existing models in a reproducible and uniform manner. To this end, we conduct extensive experiments on two representative industrial datasets with different preprocessing settings to re-evaluate 13 existing models. Surprisingly, our experimental results show that the most recent work differs less than expected from traditional work in many cases. In addition, our experiments also reveal the limitations of DUM in generalization, especially for different preprocessing and test distributions. Our benchmarking work allows researchers to evaluate the performance of new models quickly but also reasonably demonstrates fair comparison results with existing models. It also gives practitioners valuable insights into often overlooked considerations when deploying DUM. We will make this benchmarking library, evaluation protocol, and experimental setup available on GitHub.


DSGNN: A Dual-View Supergrid-Aware Graph Neural Network for Regional Air Quality Estimation

arXiv.org Artificial Intelligence

Air quality estimation can provide air quality for target regions without air quality stations, which is useful for the public. Existing air quality estimation methods divide the study area into disjointed grid regions, and apply 2D convolution to model the spatial dependencies of adjacent grid regions based on the first law of geography, failing to model the spatial dependencies of distant grid regions. To this end, we propose a Dual-view Supergrid-aware Graph Neural Network (DSGNN) for regional air quality estimation, which can model the spatial dependencies of distant grid regions from dual views (i.e., satellite-derived aerosol optical depth (AOD) and meteorology). Specifically, images are utilized to represent the regional data (i.e., AOD data and meteorology data). The dual-view supergrid learning module is introduced to generate supergrids in a parameterized way. Based on the dual-view supergrids, the dual-view implicit correlation encoding module is introduced to learn the correlations between pairwise supergrids. In addition, the dual-view message passing network is introduced to implement the information interaction on the supergrid graphs and images. Extensive experiments on two real-world datasets demonstrate that DSGNN achieves the state-of-the-art performances on the air quality estimation task, outperforming the best baseline by an average of 19.64% in MAE.


RecDCL: Dual Contrastive Learning for Recommendation

arXiv.org Artificial Intelligence

Self-supervised recommendation (SSR) has achieved great success in mining the potential interacted behaviors for collaborative filtering in recent years. As a major branch, Contrastive Learning (CL) based SSR conquers data sparsity in Web platforms by contrasting the embedding between raw data and augmented data. However, existing CL-based SSR methods mostly focus on contrasting in a batch-wise way, failing to exploit potential regularity in the feature-wise dimension, leading to redundant solutions during the representation learning process of users (items) from Websites. Furthermore, the joint benefits of utilizing both Batch-wise CL (BCL) and Feature-wise CL (FCL) for recommendations remain underexplored. To address these issues, we investigate the relationship of objectives between BCL and FCL. Our study suggests a cooperative benefit of employing both methods, as evidenced from theoretical and experimental perspectives. Based on these insights, we propose a dual CL method for recommendation, referred to as RecDCL. RecDCL first eliminates redundant solutions on user-item positive pairs in a feature-wise manner. It then optimizes the uniform distributions within users and items using a polynomial kernel from an FCL perspective. Finally, it generates contrastive embedding on output vectors in a batch-wise objective. We conduct experiments on four widely-used benchmarks and an industrial dataset. The results consistently demonstrate that the proposed RecDCL outperforms the state-of-the-art GNNs-based and SSL-based models (with up to a 5.65\% improvement in terms of Recall@20), thereby confirming the effectiveness of the joint-wise objective. All source codes used in this paper are publicly available at \url{https://github.com/THUDM/RecDCL}}.


Treatment-Aware Hyperbolic Representation Learning for Causal Effect Estimation with Social Networks

arXiv.org Artificial Intelligence

Estimating the individual treatment effect (ITE) from observational data is a crucial research topic that holds significant value across multiple domains. How to identify hidden confounders poses a key challenge in ITE estimation. Recent studies have incorporated the structural information of social networks to tackle this challenge, achieving notable advancements. However, these methods utilize graph neural networks to learn the representation of hidden confounders in Euclidean space, disregarding two critical issues: (1) the social networks often exhibit a scalefree structure, while Euclidean embeddings suffer from high distortion when used to embed such graphs, and (2) each ego-centric network within a social network manifests a treatment-related characteristic, implying significant patterns of hidden confounders. To address these issues, we propose a novel method called Treatment-Aware Hyperbolic Representation Learning (TAHyper). Firstly, TAHyper employs the hyperbolic space to encode the social networks, thereby effectively reducing the distortion of confounder representation caused by Euclidean embeddings. Secondly, we design a treatment-aware relationship identification module that enhances the representation of hidden confounders by identifying whether an individual and her neighbors receive the same treatment. Extensive experiments on two benchmark datasets are conducted to demonstrate the superiority of our method.


GTRL: An Entity Group-Aware Temporal Knowledge Graph Representation Learning Method

arXiv.org Artificial Intelligence

Temporal Knowledge Graph (TKG) representation learning embeds entities and event types into a continuous low-dimensional vector space by integrating the temporal information, which is essential for downstream tasks, e.g., event prediction and question answering. Existing methods stack multiple graph convolution layers to model the influence of distant entities, leading to the over-smoothing problem. To alleviate the problem, recent studies infuse reinforcement learning to obtain paths that contribute to modeling the influence of distant entities. However, due to the limited number of hops, these studies fail to capture the correlation between entities that are far apart and even unreachable. To this end, we propose GTRL, an entity Group-aware Temporal knowledge graph Representation Learning method. GTRL is the first work that incorporates the entity group modeling to capture the correlation between entities by stacking only a finite number of layers. Specifically, the entity group mapper is proposed to generate entity groups from entities in a learning way. Based on entity groups, the implicit correlation encoder is introduced to capture implicit correlations between any pairwise entity groups. In addition, the hierarchical GCNs are exploited to accomplish the message aggregation and representation updating on the entity group graph and the entity graph. Finally, GRUs are employed to capture the temporal dependency in TKGs. Extensive experiments on three real-world datasets demonstrate that GTRL achieves the state-of-the-art performances on the event prediction task, outperforming the best baseline by an average of 13.44%, 9.65%, 12.15%, and 15.12% in MRR, Hits@1, Hits@3, and Hits@10, respectively.