Tang, Xiao
BrickPal: Augmented Reality-based Assembly Instructions for Brick Models
Shi, Yao, Zhang, Xiaofeng, zhang, Ran, Yang, Zhou, Tang, Xiao, Ye, Hongni, Wu, Yi
The assembly instruction is a mandatory component of Lego-like brick sets.The conventional production of assembly instructions requires a considerable amount of manual fine-tuning, which is intractable for casual users and customized brick sets.Moreover, the traditional paper-based instructions lack expressiveness and interactivity.To tackle the two problems above, we present BrickPal, an augmented reality-based system, which visualizes assembly instructions in an augmented reality head-mounted display. It utilizes Natural Language Processing (NLP) techniques to generate plausible assembly sequences, and provide real-time guidance in the AR headset.Our user study demonstrates BrickPal's effectiveness at assisting users in brick assembly compared to traditional assembly methods. Additionally, the NLP algorithm-generated assembly sequences achieve the same usability with manually adapted sequences.
Power and Interference Control for VLC-Based UDN: A Reinforcement Learning Approach
Tang, Xiao, Liu, Sicong
Visible light communication (VLC) has been widely applied as a promising solution for modern short range communication. When it comes to the deployment of LED arrays in VLC networks, the emerging ultra-dense network (UDN) technology can be adopted to expand the VLC network's capacity. However, the problem of inter-cell interference (ICI) mitigation and efficient power control in the VLC-based UDN is still a critical challenge. To this end, a reinforcement learning (RL) based VLC UDN architecture is devised in this paper. The deployment of the cells is optimized via spatial reuse to mitigate ICI. An RL-based algorithm is proposed to dynamically optimize the policy of power and interference control, maximizing the system utility in the complicated and dynamic environment. Simulation results demonstrate the superiority of the proposed scheme, it increase the system utility and achievable data rate while reducing the energy consumption and ICI, which outperforms the benchmark scheme.
Sparsity-Aware Intelligent Massive Random Access Control in Open RAN: A Reinforcement Learning Based Approach
Tang, Xiao, Liu, Sicong, Du, Xiaojiang, Guizani, Mohsen
Massive random access of devices in the emerging Open Radio Access Network (O-RAN) brings great challenge to the access control and management. Exploiting the bursting nature of the access requests, sparse active user detection (SAUD) is an efficient enabler towards efficient access management, but the sparsity might be deteriorated in case of uncoordinated massive access requests. To dynamically preserve the sparsity of access requests, a reinforcement-learning (RL)-assisted scheme of closed-loop access control utilizing the access class barring technique is proposed, where the RL policy is determined through continuous interaction between the RL agent, i.e., a next generation node base (gNB), and the environment. The proposed scheme can be implemented by the near-real-time RAN intelligent controller (near-RT RIC) in O-RAN, supporting rapid switching between heterogeneous vertical applications, such as mMTC and uRLLC services. Moreover, a data-driven scheme of deep-RL-assisted SAUD is proposed to resolve highly complex environments with continuous and high-dimensional state and action spaces, where a replay buffer is applied for automatic large-scale data collection. An actor-critic framework is formulated to incorporate the strategy-learning modules into the near-RT RIC. Simulation results show that the proposed schemes can achieve superior performance in both access efficiency and user detection accuracy over the benchmark scheme for different heterogeneous services with massive access requests.
Classifying Network Data with Deep Kernel Machines
Tang, Xiao, Zhu, Mu
Inspired by a growing interest in analyzing network data, we study the problem of node classification on graphs, focusing on approaches based on kernel machines. Conventionally, kernel machines are linear classifiers in the implicit feature space. We argue that linear classification in the feature space of kernels commonly used for graphs is often not enough to produce good results. When this is the case, one naturally considers nonlinear classifiers in the feature space. We show that repeating this process produces something we call "deep kernel machines." We provide some examples where deep kernel machines can make a big difference in classification performance, and point out some connections to various recent literature on deep architectures in artificial intelligence and machine learning.