Tang, Ruiming
DisCo: Towards Harmonious Disentanglement and Collaboration between Tabular and Semantic Space for Recommendation
Du, Kounianhua, Chen, Jizheng, Lin, Jianghao, Xi, Yunjia, Wang, Hangyu, Dai, Xinyi, Chen, Bo, Tang, Ruiming, Zhang, Weinan
Recommender systems play important roles in various applications such as e-commerce, social media, etc. Conventional recommendation methods usually model the collaborative signals within the tabular representation space. Despite the personalization modeling and the efficiency, the latent semantic dependencies are omitted. Methods that introduce semantics into recommendation then emerge, injecting knowledge from the semantic representation space where the general language understanding are compressed. However, existing semantic-enhanced recommendation methods focus on aligning the two spaces, during which the representations of the two spaces tend to get close while the unique patterns are discarded and not well explored. In this paper, we propose DisCo to Disentangle the unique patterns from the two representation spaces and Collaborate the two spaces for recommendation enhancement, where both the specificity and the consistency of the two spaces are captured. Concretely, we propose 1) a dual-side attentive network to capture the intra-domain patterns and the inter-domain patterns, 2) a sufficiency constraint to preserve the task-relevant information of each representation space and filter out the noise, and 3) a disentanglement constraint to avoid the model from discarding the unique information. These modules strike a balance between disentanglement and collaboration of the two representation spaces to produce informative pattern vectors, which could serve as extra features and be appended to arbitrary recommendation backbones for enhancement. Experiment results validate the superiority of our method against different models and the compatibility of DisCo over different backbones. Various ablation studies and efficiency analysis are also conducted to justify each model component.
Large Language Models Make Sample-Efficient Recommender Systems
Lin, Jianghao, Dai, Xinyi, Shan, Rong, Chen, Bo, Tang, Ruiming, Yu, Yong, Zhang, Weinan
Large language models (LLMs) have achieved remarkable progress in the field of natural language processing (NLP), demonstrating remarkable abilities in producing text that resembles human language for various tasks. This opens up new opportunities for employing them in recommender systems (RSs). In this paper, we specifically examine the sample efficiency of LLM-enhanced recommender systems, which pertains to the model's capacity to attain superior performance with a limited quantity of training data. Conventional recommendation models (CRMs) often need a large amount of training data because of the sparsity of features and interactions. Hence, we propose and verify our core viewpoint: Large Language Models Make Sample-Efficient Recommender Systems. We propose a simple yet effective framework (i.e., Laser) to validate the viewpoint from two aspects: (1) LLMs themselves are sample-efficient recommenders; and (2) LLMs, as feature generators and encoders, make CRMs more sample-efficient. Extensive experiments on two public datasets show that Laser requires only a small fraction of training samples to match or even surpass CRMs that are trained on the entire training set, demonstrating superior sample efficiency.
Aligning Crowd Feedback via Distributional Preference Reward Modeling
Li, Dexun, Zhang, Cong, Dong, Kuicai, Deik, Derrick Goh Xin, Tang, Ruiming, Liu, Yong
Deep Reinforcement Learning is widely used for aligning Large Language Models (LLM) with human preference. However, the conventional reward modelling is predominantly dependent on human annotations provided by a select cohort of individuals. Such dependence may unintentionally result in skewed models that reflect the inclinations of these annotators, thereby failing to adequately represent the wider population's expectations. We propose the Distributional Preference Reward Model (DPRM), a simple yet effective framework to align large language models with diverse human preferences. To this end, we characterize multiple preferences by a categorical distribution and introduce a Bayesian updater to accommodate shifted or new preferences. On top of that, we design an optimal-transportation-based loss to calibrate DPRM to align with the preference distribution. Finally, the expected reward is utilized to fine-tune an LLM policy to generate responses favoured by the population. Our experiments show that DPRM significantly enhances the alignment of LLMs with population preference, yielding more accurate, unbiased, and contextually appropriate responses.
Evaluating the External and Parametric Knowledge Fusion of Large Language Models
Zhang, Hao, Zhang, Yuyang, Li, Xiaoguang, Shi, Wenxuan, Xu, Haonan, Liu, Huanshuo, Wang, Yasheng, Shang, Lifeng, Liu, Qun, Liu, Yong, Tang, Ruiming
Integrating external knowledge into large language models (LLMs) presents a promising solution to overcome the limitations imposed by their antiquated and static parametric memory. Prior studies, however, have tended to over-reliance on external knowledge, underestimating the valuable contributions of an LLMs' intrinsic parametric knowledge. The efficacy of LLMs in blending external and parametric knowledge remains largely unexplored, especially in cases where external knowledge is incomplete and necessitates supplementation by their parametric knowledge. We propose to deconstruct knowledge fusion into four distinct scenarios, offering the first thorough investigation of LLM behavior across each. We develop a systematic pipeline for data construction and knowledge infusion to simulate these fusion scenarios, facilitating a series of controlled experiments. Our investigation reveals that enhancing parametric knowledge within LLMs can significantly bolster their capability for knowledge integration. Nonetheless, we identify persistent challenges in memorizing and eliciting parametric knowledge, and determining parametric knowledge boundaries. Our findings aim to steer future explorations on harmonizing external and parametric knowledge within LLMs.
Retrievable Domain-Sensitive Feature Memory for Multi-Domain Recommendation
Zhao, Yuang, Du, Zhaocheng, Jia, Qinglin, Zhang, Linxuan, Dong, Zhenhua, Tang, Ruiming
With the increase in the business scale and number of domains in online advertising, multi-domain ad recommendation has become a mainstream solution in the industry. The core of multi-domain recommendation is effectively modeling the commonalities and distinctions among domains. Existing works are dedicated to designing model architectures for implicit multi-domain modeling while overlooking an in-depth investigation from a more fundamental perspective of feature distributions. This paper focuses on features with significant differences across various domains in both distributions and effects on model predictions. We refer to these features as domain-sensitive features, which serve as carriers of domain distinctions and are crucial for multi-domain modeling. Experiments demonstrate that existing multi-domain modeling methods may neglect domain-sensitive features, indicating insufficient learning of domain distinctions. To avoid this neglect, we propose a domain-sensitive feature attribution method to identify features that best reflect domain distinctions from the feature set. Further, we design a memory architecture that extracts domain-specific information from domain-sensitive features for the model to retrieve and integrate, thereby enhancing the awareness of domain distinctions. Extensive offline and online experiments demonstrate the superiority of our method in capturing domain distinctions and improving multi-domain recommendation performance.
Learning Structure and Knowledge Aware Representation with Large Language Models for Concept Recommendation
Li, Qingyao, Xia, Wei, Du, Kounianhua, Zhang, Qiji, Zhang, Weinan, Tang, Ruiming, Yu, Yong
Concept recommendation aims to suggest the next concept for learners to study based on their knowledge states and the human knowledge system. While knowledge states can be predicted using knowledge tracing models, previous approaches have not effectively integrated the human knowledge system into the process of designing these educational models. In the era of rapidly evolving Large Language Models (LLMs), many fields have begun using LLMs to generate and encode text, introducing external knowledge. However, integrating LLMs into concept recommendation presents two urgent challenges: 1) How to construct text for concepts that effectively incorporate the human knowledge system? 2) How to adapt non-smooth, anisotropic text encodings effectively for concept recommendation? In this paper, we propose a novel Structure and Knowledge Aware Representation learning framework for concept Recommendation (SKarREC). We leverage factual knowledge from LLMs as well as the precedence and succession relationships between concepts obtained from the knowledge graph to construct textual representations of concepts. Furthermore, we propose a graph-based adapter to adapt anisotropic text embeddings to the concept recommendation task. This adapter is pre-trained through contrastive learning on the knowledge graph to get a smooth and structure-aware concept representation. Then, it's fine-tuned through the recommendation task, forming a text-to-knowledge-to-recommendation adaptation pipeline, which effectively constructs a structure and knowledge-aware concept representation. Our method does a better job than previous adapters in transforming text encodings for application in concept recommendation. Extensive experiments on real-world datasets demonstrate the effectiveness of the proposed approach.
Extracting Essential and Disentangled Knowledge for Recommendation Enhancement
Du, Kounianhua, Chen, Jizheng, Lin, Jianghao, Zhu, Menghui, Chen, Bo, Li, Shuai, Tang, Ruiming
Recommender models play a vital role in various industrial scenarios, while often faced with the catastrophic forgetting problem caused by the fast shifting data distribution, e.g., the evolving user interests, click signals fluctuation during sales promotions, etc. To alleviate this problem, a common approach is to reuse knowledge from the historical data. However, preserving the vast and fast-accumulating data is hard, which causes dramatic storage overhead. Memorizing old data through a parametric knowledge base is then proposed, which compresses the vast amount of raw data into model parameters. Despite the flexibility, how to improve the memorization and generalization capabilities of the parametric knowledge base is challenging. In this paper, we propose two constraints to extract Essential and Disentangled Knowledge from past data for rational and generalized recommendation enhancement, which improves the capabilities of the parametric knowledge base without increasing the size of it. The essential principle helps to compress the input into representative vectors that capture the task-relevant information and filter out the noisy information. The disentanglement principle reduces the redundancy of stored information and pushes the knowledge base to focus on capturing the disentangled invariant patterns. These two rules together promote rational compression of information for robust and generalized knowledge representations. Extensive experiments on two datasets justify the effectiveness of the proposed method.
CodeGRAG: Extracting Composed Syntax Graphs for Retrieval Augmented Cross-Lingual Code Generation
Du, Kounianhua, Rui, Renting, Chai, Huacan, Fu, Lingyue, Xia, Wei, Wang, Yasheng, Tang, Ruiming, Yu, Yong, Zhang, Weinan
Utilizing large language models to generate codes has shown promising meaning in software development revolution. Despite the intelligence shown by the general large language models, their specificity in code generation can still be improved due to the syntactic gap and mismatched vocabulary existing among natural language and different programming languages. In addition, programming languages are inherently logical and complex, making them hard to be correctly generated. Existing methods rely on multiple prompts to the large language model to explore better solutions, which is expensive. In this paper, we propose Syntax Graph Retrieval Augmented Code Generation (CodeGRAG) to enhance the performance of LLMs in single-round code generation tasks. CodeGRAG extracts and summarizes the control flow and data flow of code blocks to fill the gap between programming languages and natural language. The extracted external structural knowledge models the inherent flows of code blocks, which can facilitate LLMs for better understanding of code syntax and serve as a bridge among different programming languages. CodeGRAG significantly improves the code generation ability of LLMs and can even offer performance gain for cross-lingual code generation, e.g., C++ for Python.
Retrieval-Oriented Knowledge for Click-Through Rate Prediction
Liu, Huanshuo, Chen, Bo, Zhu, Menghui, Lin, Jianghao, Qin, Jiarui, Yang, Yang, Zhang, Hao, Tang, Ruiming
Click-through rate (CTR) prediction plays an important role in personalized recommendations. Recently, sample-level retrieval-based models (e.g., RIM) have achieved remarkable performance by retrieving and aggregating relevant samples. However, their inefficiency at the inference stage makes them impractical for industrial applications. To overcome this issue, this paper proposes a universal plug-and-play Retrieval-Oriented Knowledge (ROK) framework. Specifically, a knowledge base, consisting of a retrieval-oriented embedding layer and a knowledge encoder, is designed to preserve and imitate the retrieved & aggregated representations in a decomposition-reconstruction paradigm. Knowledge distillation and contrastive learning methods are utilized to optimize the knowledge base, and the learned retrieval-enhanced representations can be integrated with arbitrary CTR models in both instance-wise and feature-wise manners. Extensive experiments on three large-scale datasets show that ROK achieves competitive performance with the retrieval-based CTR models while reserving superior inference efficiency and model compatibility.
WESE: Weak Exploration to Strong Exploitation for LLM Agents
Huang, Xu, Liu, Weiwen, Chen, Xiaolong, Wang, Xingmei, Lian, Defu, Wang, Yasheng, Tang, Ruiming, Chen, Enhong
Recently, large language models (LLMs) have demonstrated remarkable potential as an intelligent agent. However, existing researches mainly focus on enhancing the agent's reasoning or decision-making abilities through well-designed prompt engineering or task-specific fine-tuning, ignoring the procedure of exploration and exploitation. When addressing complex tasks within open-world interactive environments, these methods exhibit limitations. Firstly, the lack of global information of environments leads to greedy decisions, resulting in sub-optimal solutions. On the other hand, irrelevant information acquired from the environment not only adversely introduces noise, but also incurs additional cost. This paper proposes a novel approach, Weak Exploration to Strong Exploitation (WESE), to enhance LLM agents in solving open-world interactive tasks. Concretely, WESE involves decoupling the exploration and exploitation process, employing a cost-effective weak agent to perform exploration tasks for global knowledge. A knowledge graph-based strategy is then introduced to store the acquired knowledge and extract task-relevant knowledge, enhancing the stronger agent in success rate and efficiency for the exploitation task. Our approach is flexible enough to incorporate diverse tasks, and obtains significant improvements in both success rates and efficiency across four interactive benchmarks.