Goto

Collaborating Authors

 Tang, Luyao


OCRT: Boosting Foundation Models in the Open World with Object-Concept-Relation Triad

arXiv.org Artificial Intelligence

Although foundation models (FMs) claim to be powerful, their generalization ability significantly decreases when faced with distribution shifts, weak supervision, or malicious attacks in the open world. On the other hand, most domain generalization or adversarial fine-tuning methods are task-related or model-specific, ignoring the universality in practical applications and the transferability between FMs. This paper delves into the problem of generalizing FMs to the out-of-domain data. We propose a novel framework, the Object-Concept-Relation Triad (OCRT), that enables FMs to extract sparse, high-level concepts and intricate relational structures from raw visual inputs. The key idea is to bind objects in visual scenes and a set of object-centric representations through unsupervised decoupling and iterative refinement. To be specific, we project the object-centric representations onto a semantic concept space that the model can readily interpret and estimate their importance to filter out irrelevant elements. Then, a concept-based graph, which has a flexible degree, is constructed to incorporate the set of concepts and their corresponding importance, enabling the extraction of high-order factors from informative concepts and facilitating relational reasoning among these concepts. Extensive experiments demonstrate that OCRT can substantially boost the generalizability and robustness of SAM and CLIP across multiple downstream tasks.


Activate and Reject: Towards Safe Domain Generalization under Category Shift

arXiv.org Artificial Intelligence

Albeit the notable performance on in-domain test points, it is non-trivial for deep neural networks to attain satisfactory accuracy when deploying in the open world, where novel domains and object classes often occur. In this paper, we study a practical problem of Domain Generalization under Category Shift (DGCS), which aims to simultaneously detect unknown-class samples and classify known-class samples in the target domains. Compared to prior DG works, we face two new challenges: 1) how to learn the concept of ``unknown'' during training with only source known-class samples, and 2) how to adapt the source-trained model to unseen environments for safe model deployment. To this end, we propose a novel Activate and Reject (ART) framework to reshape the model's decision boundary to accommodate unknown classes and conduct post hoc modification to further discriminate known and unknown classes using unlabeled test data. Specifically, during training, we promote the response to the unknown by optimizing the unknown probability and then smoothing the overall output to mitigate the overconfidence issue. At test time, we introduce a step-wise online adaptation method that predicts the label by virtue of the cross-domain nearest neighbor and class prototype information without updating the network's parameters or using threshold-based mechanisms. Experiments reveal that ART consistently improves the generalization capability of deep networks on different vision tasks. For image classification, ART improves the H-score by 6.1% on average compared to the previous best method. For object detection and semantic segmentation, we establish new benchmarks and achieve competitive performance.


SRCD: Semantic Reasoning with Compound Domains for Single-Domain Generalized Object Detection

arXiv.org Artificial Intelligence

This paper provides a novel framework for single-domain generalized object detection (i.e., Single-DGOD), where we are interested in learning and maintaining the semantic structures of self-augmented compound cross-domain samples to enhance the model's generalization ability. Different from DGOD trained on multiple source domains, Single-DGOD is far more challenging to generalize well to multiple target domains with only one single source domain. Existing methods mostly adopt a similar treatment from DGOD to learn domain-invariant features by decoupling or compressing the semantic space. However, there may have two potential limitations: 1) pseudo attribute-label correlation, due to extremely scarce single-domain data; and 2) the semantic structural information is usually ignored, i.e., we found the affinities of instance-level semantic relations in samples are crucial to model generalization. In this paper, we introduce Semantic Reasoning with Compound Domains (SRCD) for Single-DGOD. Specifically, our SRCD contains two main components, namely, the texture-based self-augmentation (TBSA) module, and the local-global semantic reasoning (LGSR) module. TBSA aims to eliminate the effects of irrelevant attributes associated with labels, such as light, shadow, color, etc., at the image level by a light-yet-efficient self-augmentation. Moreover, LGSR is used to further model the semantic relationships on instance features to uncover and maintain the intrinsic semantic structures. Extensive experiments on multiple benchmarks demonstrate the effectiveness of the proposed SRCD.