Tang, Lei
AI-Driven Automated Tool for Abdominal CT Body Composition Analysis in Gastrointestinal Cancer Management
Nan, Xinyu, He, Meng, Chen, Zifan, Dong, Bin, Tang, Lei, Zhang, Li
The incidence of gastrointestinal cancers remains significantly high, particularly in China, emphasizing the importance of accurate prognostic assessments and effective treatment strategies. Research shows a strong correlation between abdominal muscle and fat tissue composition and patient outcomes. However, existing manual methods for analyzing abdominal tissue composition are time-consuming and costly, limiting clinical research scalability. To address these challenges, we developed an AI-driven tool for automated analysis of abdominal CT scans to effectively identify and segment muscle, subcutaneous fat, and visceral fat. Our tool integrates a multi-view localization model and a high-precision 2D nnUNet-based segmentation model, demonstrating a localization accuracy of 90% and a Dice Score Coefficient of 0.967 for segmentation. Furthermore, it features an interactive interface that allows clinicians to refine the segmentation results, ensuring high-quality outcomes effectively. Our tool offers a standardized method for effectively extracting critical abdominal tissues, potentially enhancing the management and treatment for gastrointestinal cancers. The code is available at https://github.com/NanXinyu/AI-Tool4Abdominal-Seg.git}{https://github.com/NanXinyu/AI-Tool4Abdominal-Seg.git.
Adaptive Few-shot Prompting for Machine Translation with Pre-trained Language Models
Tang, Lei, Qin, Jinghui, Ye, Wenxuan, Tan, Hao, Yang, Zhijing
Recently, Large language models (LLMs) with in-context learning have demonstrated remarkable potential in handling neural machine translation. However, existing evidence shows that LLMs are prompt-sensitive and it is sub-optimal to apply the fixed prompt to any input for downstream machine translation tasks. To address this issue, we propose an adaptive few-shot prompting (AFSP) framework to automatically select suitable translation demonstrations for various source input sentences to further elicit the translation capability of an LLM for better machine translation. First, we build a translation demonstration retrieval module based on LLM's embedding to retrieve top-k semantic-similar translation demonstrations from aligned parallel translation corpus. Rather than using other embedding models for semantic demonstration retrieval, we build a hybrid demonstration retrieval module based on the embedding layer of the deployed LLM to build better input representation for retrieving more semantic-related translation demonstrations. Then, to ensure better semantic consistency between source inputs and target outputs, we force the deployed LLM itself to generate multiple output candidates in the target language with the help of translation demonstrations and rerank these candidates. Besides, to better evaluate the effectiveness of our AFSP framework on the latest language and extend the research boundary of neural machine translation, we construct a high-quality diplomatic Chinese-English parallel dataset that consists of 5,528 parallel Chinese-English sentences. Finally, extensive experiments on the proposed diplomatic Chinese-English parallel dataset and the United Nations Parallel Corpus (Chinese-English part) show the effectiveness and superiority of our proposed AFSP.
Progressive Dual Priori Network for Generalized Breast Tumor Segmentation
Wang, Li, Wang, Lihui, Kuai, Zixiang, Tang, Lei, Ou, Yingfeng, Ye, Chen, Zhu, Yuemin
To promote the generalization ability of breast tumor segmentation models, as well as to improve the segmentation performance for breast tumors with smaller size, low-contrast amd irregular shape, we propose a progressive dual priori network (PDPNet) to segment breast tumors from dynamic enhanced magnetic resonance images (DCE-MRI) acquired at different sites. The PDPNet first cropped tumor regions with a coarse-segmentation based localization module, then the breast tumor mask was progressively refined by using the weak semantic priori and cross-scale correlation prior knowledge. To validate the effectiveness of PDPNet, we compared it with several state-of-the-art methods on multi-center datasets. The results showed that, comparing against the suboptimal method, the DSC, SEN, KAPPA and HD95 of PDPNet were improved 3.63\%, 8.19\%, 5.52\%, and 3.66\% respectively. In addition, through ablations, we demonstrated that the proposed localization module can decrease the influence of normal tissues and therefore improve the generalization ability of the model. The weak semantic priors allow focusing on tumor regions to avoid missing small tumors and low-contrast tumors. The cross-scale correlation priors are beneficial for promoting the shape-aware ability for irregual tumors. Thus integrating them in a unified framework improved the multi-center breast tumor segmentation performance.
propnet: Propagating 2D Annotation to 3D Segmentation for Gastric Tumors on CT Scans
Chen, Zifan, Li, Jiazheng, Zhao, Jie, Liu, Yiting, Li, Hongfeng, Dong, Bin, Tang, Lei, Zhang, Li
**Background:** Accurate 3D CT scan segmentation of gastric tumors is pivotal for diagnosis and treatment. The challenges lie in the irregular shapes, blurred boundaries of tumors, and the inefficiency of existing methods. **Purpose:** We conducted a study to introduce a model, utilizing human-guided knowledge and unique modules, to address the challenges of 3D tumor segmentation. **Methods:** We developed the PropNet framework, propagating radiologists' knowledge from 2D annotations to the entire 3D space. This model consists of a proposing stage for coarse segmentation and a refining stage for improved segmentation, using two-way branches for enhanced performance and an up-down strategy for efficiency. **Results:** With 98 patient scans for training and 30 for validation, our method achieves a significant agreement with manual annotation (Dice of 0.803) and improves efficiency. The performance is comparable in different scenarios and with various radiologists' annotations (Dice between 0.785 and 0.803). Moreover, the model shows improved prognostic prediction performance (C-index of 0.620 vs. 0.576) on an independent validation set of 42 patients with advanced gastric cancer. **Conclusions:** Our model generates accurate tumor segmentation efficiently and stably, improving prognostic performance and reducing high-throughput image reading workload. This model can accelerate the quantitative analysis of gastric tumors and enhance downstream task performance.
ProductNet: a Collection of High-Quality Datasets for Product Representation Learning
Wang, Chu, Tang, Lei, Lu, Yang, Bian, Shujun, Fujita, Hirohisa, Zhang, Da, Zhang, Zuohua, Wu, Yongning
ProductNet is a collection of high-quality product datasets for better product understanding. Motivated by ImageNet, ProductNet aims at supporting product representation learning by curating product datasets of high quality with properly chosen taxonomy. In this paper, the two goals of building high-quality product datasets and learning product representation support each other in an iterative fashion: the product embedding is obtained via a multi-modal deep neural network (master model) designed to leverage product image and catalog information; and in return, the embedding is utilized via active learning (local model) to vastly accelerate the annotation process. For the labeled data, the proposed master model yields high categorization accuracy (94.7% top-1 accuracy for 1240 classes), which can be used as search indices, partition keys, and input features for machine learning models. The product embedding, as well as the fined-tuned master model for a specific business task, can also be used for various transfer learning tasks.
Reference Product Search
Wang, Chu, Tang, Lei, Bian, Shujun, Zhang, Da, Zhang, Zuohua, Wu, Yongning
The reference products can be used as alternatives closely related to a product of customers' interest. In candidates to support downstream modeling tasks and business general, the solutions consist of two stages: a candidate product applications. The search method consists of product representation set is retrieved first, followed by a task-specific ranking model to learning and fingerprint-type vector searching. The product catalog generate the results. Often, research interests focus on a ranking information is transformed into a high-quality embedding of low model built to optimize towards such a business application, but a dimensions via a novel attention auto-encoder neural network, and suitable candidate product set is required to feed the ranking model the embedding is further coupled with a binary encoding vector for and it is not well discussed in the literature.