Tang, Jingqun
Vision as LoRA
Wang, Han, Ye, Yongjie, Li, Bingru, Nie, Yuxiang, Lu, Jinghui, Tang, Jingqun, Wang, Yanjie, Huang, Can
We introduce Vision as LoRA (VoRA), a novel paradigm for transforming an LLM into an MLLM. Unlike prevalent MLLM architectures that rely on external vision modules for vision encoding, VoRA internalizes visual capabilities by integrating vision-specific LoRA layers directly into the LLM. This design allows the added parameters to be seamlessly merged into the LLM during inference, eliminating structural complexity and minimizing computational overhead. Moreover, inheriting the LLM's ability of handling flexible context, VoRA can process inputs at arbitrary resolutions. To further strengthen VoRA's visual capabilities, we introduce a block-wise distillation method that transfers visual priors from a pre-trained ViT into the LoRA layers, effectively accelerating training by injecting visual knowledge. Additionally, we apply bi-directional attention masks to better capture the context information of an image. We successfully demonstrate that with additional pre-training data, VoRA can perform comparably with conventional encode-based MLLMs. All training data, codes, and model weights will be released at https://github.com/Hon-Wong/VoRA.
OCRBench v2: An Improved Benchmark for Evaluating Large Multimodal Models on Visual Text Localization and Reasoning
Fu, Ling, Yang, Biao, Kuang, Zhebin, Song, Jiajun, Li, Yuzhe, Zhu, Linghao, Luo, Qidi, Wang, Xinyu, Lu, Hao, Huang, Mingxin, Li, Zhang, Tang, Guozhi, Shan, Bin, Lin, Chunhui, Liu, Qi, Wu, Binghong, Feng, Hao, Liu, Hao, Huang, Can, Tang, Jingqun, Chen, Wei, Jin, Lianwen, Liu, Yuliang, Bai, Xiang
Scoring the Optical Character Recognition (OCR) capabilities of Large Multimodal Models (LMMs) has witnessed growing interest recently. Existing benchmarks have highlighted the impressive performance of LMMs in text recognition; however, their abilities on certain challenging tasks, such as text localization, handwritten content extraction, and logical reasoning, remain underexplored. To bridge this gap, we introduce OCRBench v2, a large-scale bilingual text-centric benchmark with currently the most comprehensive set of tasks (4x more tasks than the previous multi-scene benchmark OCRBench), the widest coverage of scenarios (31 diverse scenarios including street scene, receipt, formula, diagram, and so on), and thorough evaluation metrics, with a total of 10,000 human-verified question-answering pairs and a high proportion of difficult samples. After carefully benchmarking state-of-the-art LMMs on OCRBench v2, we find that 20 out of 22 LMMs score below 50 (100 in total) and suffer from five-type limitations, including less frequently encountered text recognition, fine-grained perception, layout perception, complex element parsing, and logical reasoning. The benchmark and evaluation scripts are available at https://github.com/Yuliang-liu/MultimodalOCR.
A Bounding Box is Worth One Token: Interleaving Layout and Text in a Large Language Model for Document Understanding
Lu, Jinghui, Yu, Haiyang, Wang, Yanjie, Ye, Yongjie, Tang, Jingqun, Yang, Ziwei, Wu, Binghong, Liu, Qi, Feng, Hao, Wang, Han, Liu, Hao, Huang, Can
Recently, many studies have demonstrated that exclusively incorporating OCR-derived text and spatial layouts with large language models (LLMs) can be highly effective for document understanding tasks. However, existing methods that integrate spatial layouts with text have limitations, such as producing overly long text sequences or failing to fully leverage the autoregressive traits of LLMs. In this work, we introduce Interleaving Layout and Text in a Large Language Model (LayTextLLM)} for document understanding. In particular, LayTextLLM projects each bounding box to a single embedding and interleaves it with text, efficiently avoiding long sequence issues while leveraging autoregressive traits of LLMs. LayTextLLM not only streamlines the interaction of layout and textual data but also shows enhanced performance in Key Information Extraction (KIE) and Visual Question Answering (VQA). Comprehensive benchmark evaluations reveal significant improvements, with a 27.0% increase on KIE tasks and 24.1% on VQA tasks compared to previous state-of-the-art document understanding MLLMs, as well as a 15.5% improvement over other SOTA OCR-based LLMs on KIE tasks.
TextSquare: Scaling up Text-Centric Visual Instruction Tuning
Tang, Jingqun, Lin, Chunhui, Zhao, Zhen, Wei, Shu, Wu, Binghong, Liu, Qi, Feng, Hao, Li, Yang, Wang, Siqi, Liao, Lei, Shi, Wei, Liu, Yuliang, Liu, Hao, Xie, Yuan, Bai, Xiang, Huang, Can
Text-centric visual question answering (VQA) has made great strides with the development of Multimodal Large Language Models (MLLMs), yet open-source models still fall short of leading models like GPT4V and Gemini, partly due to a lack of extensive, high-quality instruction tuning data. To this end, we introduce a new approach for creating a massive, high-quality instruction-tuning dataset, Square-10M, which is generated using closed-source MLLMs. The data construction process, termed Square, consists of four steps: Self-Questioning, Answering, Reasoning, and Evaluation. Our experiments with Square-10M led to three key findings: 1) Our model, TextSquare, considerably surpasses open-source previous state-of-the-art Text-centric MLLMs and sets a new standard on OCRBench(62.2%). It even outperforms top-tier models like GPT4V and Gemini in 6 of 10 text-centric benchmarks. 2) Additionally, we demonstrate the critical role of VQA reasoning data in offering comprehensive contextual insights for specific questions. This not only improves accuracy but also significantly mitigates hallucinations. Specifically, TextSquare scores an average of 75.1% across four general VQA and hallucination evaluation datasets, outperforming previous state-of-the-art models. 3) Notably, the phenomenon observed in scaling text-centric VQA datasets reveals a vivid pattern: the exponential increase of instruction tuning data volume is directly proportional to the improvement in model performance, thereby validating the necessity of the dataset scale and the high quality of Square-10M.
SPTS v2: Single-Point Scene Text Spotting
Liu, Yuliang, Zhang, Jiaxin, Peng, Dezhi, Huang, Mingxin, Wang, Xinyu, Tang, Jingqun, Huang, Can, Lin, Dahua, Shen, Chunhua, Bai, Xiang, Jin, Lianwen
Abstract--End-to-end scene text spotting has made significant progress due to its intrinsic synergy between text detection and recognition. Previous methods commonly regard manual annotations such as horizontal rectangles, rotated rectangles, quadrangles, and polygons as a prerequisite, which are much more expensive than using single-point. Our new framework, SPTS v2, allows us to train high-performing text-spotting models using a single-point annotation. SPTS v2 reserves the advantage of the auto-regressive Transformer with an Instance Assignment Decoder (IAD) through sequentially predicting the center points of all text instances inside the same predicting sequence, while with a Parallel Recognition Decoder (PRD) for text recognition in parallel, which significantly reduces the requirement of the length of the sequence. These two decoders share the same parameters and are interactively connected with a simple but effective information transmission process to pass the gradient and information. Comprehensive experiments on various existing benchmark datasets demonstrate the SPTS v2 can outperform previous state-of-the-art single-point text spotters with fewer parameters while achieving 19 faster inference speed. Within the context of our SPTS v2 framework, our experiments suggest a potential preference for single-point representation in scene text spotting when compared to other representations. Such an attempt provides a significant opportunity for scene text spotting applications beyond the realms of existing paradigms.
UniDoc: A Universal Large Multimodal Model for Simultaneous Text Detection, Recognition, Spotting and Understanding
Feng, Hao, Wang, Zijian, Tang, Jingqun, Lu, Jinghui, Zhou, Wengang, Li, Houqiang, Huang, Can
In the era of Large Language Models (LLMs), tremendous strides have been made in the field of multimodal understanding. However, existing advanced algorithms are limited to effectively utilizing the immense representation capabilities and rich world knowledge inherent to these large pre-trained models, and the beneficial connections among tasks within the context of text-rich scenarios have not been sufficiently explored. In this work, we introduce UniDoc, a novel multimodal model equipped with text detection and recognition capabilities, which are deficient in existing approaches. Moreover, UniDoc capitalizes on the beneficial interactions among tasks to enhance the performance of each individual task. To implement UniDoc, we perform unified multimodal instruct tuning on the contributed large-scale instruction following datasets. Quantitative and qualitative experimental results show that UniDoc sets state-of-the-art scores across multiple challenging benchmarks. To the best of our knowledge, this is the first large multimodal model capable of simultaneous text detection, recognition, spotting, and understanding.