Goto

Collaborating Authors

 Tang, Haoteng


SouLLMate: An Application Enhancing Diverse Mental Health Support with Adaptive LLMs, Prompt Engineering, and RAG Techniques

arXiv.org Artificial Intelligence

Mental health issues significantly impact individuals' daily lives, yet many do not receive the help they need even with available online resources. This study aims to provide diverse, accessible, stigma-free, personalized, and real-time mental health support through cutting-edge AI technologies. It makes the following contributions: (1) Conducting an extensive survey of recent mental health support methods to identify prevalent functionalities and unmet needs. (2) Introducing SouLLMate, an adaptive LLM-driven system that integrates LLM technologies, Chain, Retrieval-Augmented Generation (RAG), prompt engineering, and domain knowledge. This system offers advanced features such as Risk Detection and Proactive Guidance Dialogue, and utilizes RAG for personalized profile uploads and Conversational Information Extraction. (3) Developing novel evaluation approaches for preliminary assessments and risk detection via professionally annotated interview data and real-life suicide tendency data. (4) Proposing the Key Indicator Summarization (KIS), Proactive Questioning Strategy (PQS), and Stacked Multi-Model Reasoning (SMMR) methods to enhance model performance and usability through context-sensitive response adjustments, semantic coherence evaluations, and enhanced accuracy of long-context reasoning in language models. This study contributes to advancing mental health support technologies, potentially improving the accessibility and effectiveness of mental health care globally.


Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation

arXiv.org Artificial Intelligence

The MRI-derived brain network serves as a pivotal instrument in elucidating both the structural and functional aspects of the brain, encompassing the ramifications of diseases and developmental processes. However, prevailing methodologies, often focusing on synchronous BOLD signals from functional MRI (fMRI), may not capture directional influences among brain regions and rarely tackle temporal functional dynamics. In this study, we first construct the brain-effective network via the dynamic causal model. Subsequently, we introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE). This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks via an ordinary differential equation (ODE) model, which characterizes spatial-temporal brain dynamics. Our framework is validated on several clinical phenotype prediction tasks using two independent publicly available datasets (HCP and OASIS). The experimental results clearly demonstrate the advantages of our model compared to several state-of-the-art methods.


Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling Model

arXiv.org Artificial Intelligence

Recently brain networks have been widely adopted to study brain dynamics, brain development and brain diseases. Graph representation learning techniques on brain functional networks can facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases. However, current graph learning techniques have several issues on brain network mining. Firstly, most current graph learning models are designed for unsigned graph, which hinders the analysis of many signed network data (e.g., brain functional networks). Meanwhile, the insufficiency of brain network data limits the model performance on clinical phenotypes predictions. Moreover, few of current graph learning model is interpretable, which may not be capable to provide biological insights for model outcomes. Here, we propose an interpretable hierarchical signed graph representation learning model to extract graph-level representations from brain functional networks, which can be used for different prediction tasks. In order to further improve the model performance, we also propose a new strategy to augment functional brain network data for contrastive learning. We evaluate this framework on different classification and regression tasks using the data from HCP and OASIS. Our results from extensive experiments demonstrate the superiority of the proposed model compared to several state-of-the-art techniques. Additionally, we use graph saliency maps, derived from these prediction tasks, to demonstrate detection and interpretation of phenotypic biomarkers.


CommPOOL: An Interpretable Graph Pooling Framework for Hierarchical Graph Representation Learning

arXiv.org Artificial Intelligence

Recent years have witnessed the emergence and flourishing of hierarchical graph pooling neural networks (HGPNNs) which are effective graph representation learning approaches for graph level tasks such as graph classification. However, current HGPNNs do not take full advantage of the graph's intrinsic structures (e.g., community structure). Moreover, the pooling operations in existing HGPNNs are difficult to be interpreted. In this paper, we propose a new interpretable graph pooling framework - CommPOOL, that can capture and preserve the hierarchical community structure of graphs in the graph representation learning process. Specifically, the proposed community pooling mechanism in CommPOOL utilizes an unsupervised approach for capturing the inherent community structure of graphs in an interpretable manner. CommPOOL is a general and flexible framework for hierarchical graph representation learning that can further facilitate various graph-level tasks. Evaluations on five public benchmark datasets and one synthetic dataset demonstrate the superior performance of CommPOOL in graph representation learning for graph classification compared to the state-of-the-art baseline methods, and its effectiveness in capturing and preserving the community structure of graphs.


Adversarial Attack on Hierarchical Graph Pooling Neural Networks

arXiv.org Machine Learning

Recent years have witnessed the emergence and development of graph neural networks (GNNs), which have been shown as a powerful approach for graph representation learning in many tasks, such as node classification and graph classification. The research on the robustness of these models has also started to attract attentions in the machine learning field. However, most of the existing work in this area focus on the GNNs for node-level tasks, while little work has been done to study the robustness of the GNNs for the graph classification task. In this paper, we aim to explore the vulnerability of the Hierarchical Graph Pooling (HGP) Neural Networks, which are advanced GNNs that perform very well in the graph classification in terms of prediction accuracy. We propose an adversarial attack framework for this task. Specifically, we design a surrogate model that consists of convolutional and pooling operators to generate adversarial samples to fool the hierarchical GNN-based graph classification models. We set the preserved nodes by the pooling operator as our attack targets, and then we perturb the attack targets slightly to fool the pooling operator in hierarchical GNNs so that they will select the wrong nodes to preserve. We show the adversarial samples generated from multiple datasets by our surrogate model have enough transferability to attack current state-of-art graph classification models. Furthermore, we conduct the robust train on the target models and demonstrate that the retrained graph classification models are able to better defend against the attack from the adversarial samples. To the best of our knowledge, this is the first work on the adversarial attack against hierarchical GNN-based graph classification models.