Tang, Guoyu
LREF: A Novel LLM-based Relevance Framework for E-commerce
Tang, Tian, Tian, Zhixing, Zhu, Zhenyu, Wang, Chenyang, Hu, Haiqing, Tang, Guoyu, Liu, Lin, Xu, Sulong
Query and product relevance prediction is a critical component for ensuring a smooth user experience in e-commerce search. Traditional studies mainly focus on BERT-based models to assess the semantic relevance between queries and products. However, the discriminative paradigm and limited knowledge capacity of these approaches restrict their ability to comprehend the relevance between queries and products fully. With the rapid advancement of Large Language Models (LLMs), recent research has begun to explore their application to industrial search systems, as LLMs provide extensive world knowledge and flexible optimization for reasoning processes. Nonetheless, directly leveraging LLMs for relevance prediction tasks introduces new challenges, including a high demand for data quality, the necessity for meticulous optimization of reasoning processes, and an optimistic bias that can result in over-recall. To overcome the above problems, this paper proposes a novel framework called the LLM-based RElevance Framework (LREF) aimed at enhancing e-commerce search relevance. The framework comprises three main stages: supervised fine-tuning (SFT) with Data Selection, Multiple Chain of Thought (Multi-CoT) tuning, and Direct Preference Optimization (DPO) for de-biasing. We evaluate the performance of the framework through a series of offline experiments on large-scale real-world datasets, as well as online A/B testing. The results indicate significant improvements in both offline and online metrics. Ultimately, the model was deployed in a well-known e-commerce application, yielding substantial commercial benefits.
A Preference-oriented Diversity Model Based on Mutual-information in Re-ranking for E-commerce Search
Wang, Huimu, Li, Mingming, Miao, Dadong, Wang, Songlin, Tang, Guoyu, Liu, Lin, Xu, Sulong, Hu, Jinghe
Re-ranking is a process of rearranging ranking list to more effectively meet user demands by accounting for the interrelationships between items. Existing methods predominantly enhance the precision of search results, often at the expense of diversity, leading to outcomes that may not fulfill the varied needs of users. Conversely, methods designed to promote diversity might compromise the precision of the results, failing to satisfy the users' requirements for accuracy. To alleviate the above problems, this paper proposes a Preference-oriented Diversity Model Based on Mutual-information (PODM-MI), which consider both accuracy and diversity in the re-ranking process. Specifically, PODM-MI adopts Multidimensional Gaussian distributions based on variational inference to capture users' diversity preferences with uncertainty. Then we maximize the mutual information between the diversity preferences of the users and the candidate items using the maximum variational inference lower bound to enhance their correlations. Subsequently, we derive a utility matrix based on the correlations, enabling the adaptive ranking of items in line with user preferences and establishing a balance between the aforementioned objectives. Experimental results on real-world online e-commerce systems demonstrate the significant improvements of PODM-MI, and we have successfully deployed PODM-MI on an e-commerce search platform.
Attention Weighted Mixture of Experts with Contrastive Learning for Personalized Ranking in E-commerce
Gong, Juan, Chen, Zhenlin, Ma, Chaoyi, Xiao, Zhuojian, Wang, Haonan, Tang, Guoyu, Liu, Lin, Xu, Sulong, Long, Bo, Jiang, Yunjiang
Ranking model plays an essential role in e-commerce search and recommendation. An effective ranking model should give a personalized ranking list for each user according to the user preference. Existing algorithms usually extract a user representation vector from the user behavior sequence, then feed the vector into a feed-forward network (FFN) together with other features for feature interactions, and finally produce a personalized ranking score. Despite tremendous progress in the past, there is still room for improvement. Firstly, the personalized patterns of feature interactions for different users are not explicitly modeled. Secondly, most of existing algorithms have poor personalized ranking results for long-tail users with few historical behaviors due to the data sparsity. To overcome the two challenges, we propose Attention Weighted Mixture of Experts (AW-MoE) with contrastive learning for personalized ranking. Firstly, AW-MoE leverages the MoE framework to capture personalized feature interactions for different users. To model the user preference, the user behavior sequence is simultaneously fed into expert networks and the gate network. Within the gate network, one gate unit and one activation unit are designed to adaptively learn the fine-grained activation vector for experts using an attention mechanism. Secondly, a random masking strategy is applied to the user behavior sequence to simulate long-tail users, and an auxiliary contrastive loss is imposed to the output of the gate network to improve the model generalization for these users. This is validated by a higher performance gain on the long-tail user test set. Experiment results on a JD real production dataset and a public dataset demonstrate the effectiveness of AW-MoE, which significantly outperforms state-of-art methods. Notably, AW-MoE has been successfully deployed in the JD e-commerce search engine, ...
From Semantic Retrieval to Pairwise Ranking: Applying Deep Learning in E-commerce Search
Li, Rui, Jiang, Yunjiang, Yang, Wenyun, Tang, Guoyu, Wang, Songlin, Ma, Chaoyi, He, Wei, Xiong, Xi, Xiao, Yun, Zhao, Eric Yihong
We introduce deep learning models to the two most important stages in product search at JD.com, one of the largest e-commerce platforms in the world. Specifically, we outline the design of a deep learning system that retrieves semantically relevant items to a query within milliseconds, and a pairwise deep re-ranking system, which learns subtle user preferences. Compared to traditional search systems, the proposed approaches are better at semantic retrieval and personalized ranking, achieving significant improvements.
Adversarial Mixture Of Experts with Category Hierarchy Soft Constraint
Xiao, Zhuojian, jiang, Yunjiang, Tang, Guoyu, Liu, Lin, Xu, Sulong, Xiao, Yun, Yan, Weipeng
Product search is the most common way for people to satisfy their shopping needs on e-commerce websites. Products are typically annotated with one of several broad categorical tags, such as "Clothing" or "Electronics", as well as finer-grained categories like "Refrigerator" or "TV", both under "Electronics". These tags are used to construct a hierarchy of query categories. Feature distributions such as price and brand popularity vary wildly across query categories. In addition, feature importance for the purpose of CTR/CVR predictions differs from one category to another. In this work, we leverage the Mixture of Expert (MoE) framework to learn a ranking model that specializes for each query category. In particular, our gate network relies solely on the category ids extracted from the user query. While classical MoE's pick expert towers spontaneously for each input example, we explore two techniques to establish more explicit and transparent connections between the experts and query categories. To help differentiate experts on their domain specialties, we introduce a form of adversarial regularization among the expert outputs, forcing them to disagree with one another. As a result, they tend to approach each prediction problem from different angles, rather than copying one another. This is validated by a much stronger clustering effect of the gate output vectors under different categories. In addition, soft gating constraints based on the categorical hierarchy are imposed to help similar products choose similar gate values. and make them more likely to share similar experts. This allows aggregation of training data among smaller sibling categories to overcome data scarcity issues among the latter. Experiments on a learning-to-rank dataset gathered from a leading e-commerce search log demonstrate that MoE with our improvements consistently outperforms competing models.