Not enough data to create a plot.
Try a different view from the menu above.
Tang, Fei
Think Twice, Click Once: Enhancing GUI Grounding via Fast and Slow Systems
Tang, Fei, Shen, Yongliang, Zhang, Hang, Chen, Siqi, Hou, Guiyang, Zhang, Wenqi, Zhang, Wenqiao, Song, Kaitao, Lu, Weiming, Zhuang, Yueting
Humans can flexibly switch between different modes of thinking based on task complexity: from rapid intuitive judgments to in-depth analytical understanding. However, current Graphical User Interface (GUI) grounding systems which locate interface elements based on natural language instructions rely solely on immediate prediction without reasoning, struggling to understand complex interface layouts with nested structures and hierarchical relationships, limiting their effectiveness on complex interfaces. Inspired by human dual-system cognition, we present Focus, a novel GUI grounding framework that combines fast prediction with systematic analysis. The framework dynamically switches between rapid and deliberate processing through an adaptive system switching based on task complexity, optimizing both efficiency and accuracy. Focus decomposes grounding into progressive stages: interface summarization, visual focused analysis, and precise coordinate prediction. This structured decomposition enables systematic understanding of both interface layouts and visual relationships. Extensive experiments show that Focus achieves state-of-the-art performance using only 300K of the training data with a 2B parameter model compared to existing approaches. Focus demonstrates superior performance particularly in complex GUI scenarios, achieving 77.4% average accuracy on ScreenSpot and 13.3% on the more challenging ScreenSpot-Pro. Our analysis reveals the effectiveness of this dual-system approach while demonstrating its potential for improving complex GUI interaction scenarios.
GaVaMoE: Gaussian-Variational Gated Mixture of Experts for Explainable Recommendation
Tang, Fei, Shen, Yongliang, Zhang, Hang, Tan, Zeqi, Zhang, Wenqi, Hou, Guiyang, Song, Kaitao, Lu, Weiming, Zhuang, Yueting
Large language model-based explainable recommendation (LLM-based ER) systems show promise in generating human-like explanations for recommendations. However, they face challenges in modeling user-item collaborative preferences, personalizing explanations, and handling sparse user-item interactions. To address these issues, we propose GaVaMoE, a novel Gaussian-Variational Gated Mixture of Experts framework for explainable recommendation. GaVaMoE introduces two key components: (1) a rating reconstruction module that employs Variational Autoencoder (VAE) with a Gaussian Mixture Model (GMM) to capture complex user-item collaborative preferences, serving as a pre-trained multi-gating mechanism; and (2) a set of fine-grained expert models coupled with the multi-gating mechanism for generating highly personalized explanations. The VAE component models latent factors in user-item interactions, while the GMM clusters users with similar behaviors. Each cluster corresponds to a gate in the multi-gating mechanism, routing user-item pairs to appropriate expert models. This architecture enables GaVaMoE to generate tailored explanations for specific user types and preferences, mitigating data sparsity by leveraging user similarities. Extensive experiments on three real-world datasets demonstrate that GaVaMoE significantly outperforms existing methods in explanation quality, personalization, and consistency. Notably, GaVaMoE exhibits robust performance in scenarios with sparse user-item interactions, maintaining high-quality explanations even for users with limited historical data.
Younger: The First Dataset for Artificial Intelligence-Generated Neural Network Architecture
Yang, Zhengxin, Gao, Wanling, Peng, Luzhou, Huang, Yunyou, Tang, Fei, Zhan, Jianfeng
Designing and optimizing neural network architectures typically requires extensive expertise, starting with handcrafted designs and then manual or automated refinement. This dependency presents a significant barrier to rapid innovation. Recognizing the complexity of automatically generating neural network architecture from scratch, we introduce Younger, a pioneering dataset to advance this ambitious goal. Derived from over 174K real-world models across more than 30 tasks from various public model hubs, Younger includes 7,629 unique architectures, and each is represented as a directed acyclic graph with detailed operator-level information. The dataset facilitates two primary design paradigms: global, for creating complete architectures from scratch, and local, for detailed architecture component refinement. By establishing these capabilities, Younger contributes to a new frontier, Artificial Intelligence-Generated Neural Network Architecture (AIGNNA). Our experiments explore the potential and effectiveness of Younger for automated architecture generation and, as a secondary benefit, demonstrate that Younger can serve as a benchmark dataset, advancing the development of graph neural networks. We release the dataset and code publicly to lower the entry barriers and encourage further research in this challenging area.
Towards Large-Scale Training of Pathology Foundation Models
ai, kaiko., Aben, Nanne, de Jong, Edwin D., Gatopoulos, Ioannis, Kรคnzig, Nicolas, Karasikov, Mikhail, Lagrรฉ, Axel, Moser, Roman, van Doorn, Joost, Tang, Fei
Driven by the recent advances in deep learning methods and, in particular, by the development of modern self-supervised learning algorithms, increased interest and efforts have been devoted to build foundation models (FMs) for medical images. In this work, we present our scalable training pipeline for large pathology imaging data, and a comprehensive analysis of various hyperparameter choices and training techniques for building pathology FMs. We release and make publicly available the first batch of our pathology FMs (https://github.com/kaiko-ai/towards_large_pathology_fms) trained on open-access TCGA whole slide images, a commonly used collection of pathology images. The experimental evaluation shows that our models reach state-of-the-art performance on various patch-level downstream tasks, ranging from breast cancer subtyping to colorectal nuclear segmentation. Finally, to unify the evaluation approaches used in the field and to simplify future comparisons of different FMs, we present an open-source framework (https://github.com/kaiko-ai/eva) designed for the consistent evaluation of pathology FMs across various downstream tasks.
AGIBench: A Multi-granularity, Multimodal, Human-referenced, Auto-scoring Benchmark for Large Language Models
Tang, Fei, Gao, Wanling, Peng, Luzhou, Zhan, Jianfeng
Large language models (LLMs) like ChatGPT have revealed amazing intelligence. How to evaluate the question-solving abilities of LLMs and their degrees of intelligence is a hot-spot but challenging issue. First, the question-solving abilities are interlaced with different ability branches like understanding and massive knowledge categories like mathematics. Second, the inputs of questions are multimodal that may involve text and images. Third, the response format of LLMs is diverse and thus poses great challenges for result extraction and evaluation. In this paper, we propose AGIBench -- a multi-granularity, multimodal, human-referenced, and auto-scoring benchmarking methodology for LLMs. Instead of a collection of blended questions, AGIBench focuses on three typical ability branches and adopts a four-tuple to label the attributes of each question. First, it supports multi-granularity benchmarking, e.g., per-question, per-ability branch, per-knowledge, per-modal, per-dataset, and per-difficulty level granularities. Second, it contains multimodal input, including text and images. Third, it classifies all the questions into five degrees of difficulty according to the average accuracy rate of abundant educated humans (human-referenced). Fourth, it adopts zero-shot learning to avoid introducing additional unpredictability and provides an auto-scoring method to extract and judge the result. Finally, it defines multi-dimensional metrics, including accuracy under the average, worst, best, and majority voting cases, and repeatability. AGIBench is publically available from \url{https://www.benchcouncil.org/agibench}.
Quality at the Tail
Yang, Zhengxin, Gao, Wanling, Luo, Chunjie, Wang, Lei, Tang, Fei, Wen, Xu, Zhan, Jianfeng
Benchmarking and evaluating deep learning models and systems necessitate a meticulous approach to ensure comprehensive assessment. In practical applications, it is paramount to consider both the inference quality and the inference time, particularly within critical contexts, where stringent requirements demand the simultaneous satisfaction of both metrics. Neglecting either aspect can result in severe and irreversible consequences, including loss of human life and property damage. Unfortunately, many studies lack a comprehensive consideration of these metrics, often conducted under ideal or permissive conditions, thereby leading to incomplete or non-intuitive evaluation methodologies. This study reveals that deep learning inference quality exhibits fluctuations, which further introduces complications and challenges to the benchmarking and evaluation. To better characterize the phenomenon, the concept of "tail quality" is introduced, which indicates the quality at the tail of distributions. "Tail quality" can offer a more objective evaluation, overcoming the limitations of conventional inference quality and inference time metrics in capturing the quality fluctuation phenomenon. To capture the phenomenon, this paper also proposes a pioneering evaluation framework for comprehensive assessment and analysis of various factors affecting inference time and quality. Leveraging this framework enables the anticipation of the potential distribution of inference time and inference quality, thus capturing "tail quality" before practically applying deep learning. The effectiveness of the evaluation framework is validated through experiments conducted on deep learning models for three different tasks across four systems. Furthermore, employing this evaluation framework, the experiments conducted a preliminary analysis of several factors influencing inference quality and inference time.
Traffic4cast at NeurIPS 2022 -- Predict Dynamics along Graph Edges from Sparse Node Data: Whole City Traffic and ETA from Stationary Vehicle Detectors
Neun, Moritz, Eichenberger, Christian, Martin, Henry, Spanring, Markus, Siripurapu, Rahul, Springer, Daniel, Deng, Leyan, Wu, Chenwang, Lian, Defu, Zhou, Min, Lumiste, Martin, Ilie, Andrei, Wu, Xinhua, Lyu, Cheng, Lu, Qing-Long, Mahajan, Vishal, Lu, Yichao, Li, Jiezhang, Li, Junjun, Gong, Yue-Jiao, Grรถtschla, Florian, Mathys, Joรซl, Wei, Ye, Haitao, He, Fang, Hui, Malm, Kevin, Tang, Fei, Kopp, Michael, Kreil, David, Hochreiter, Sepp
The global trends of urbanization and increased personal mobility force us to rethink the way we live and use urban space. The Traffic4cast competition series tackles this problem in a data-driven way, advancing the latest methods in machine learning for modeling complex spatial systems over time. In this edition, our dynamic road graph data combine information from road maps, $10^{12}$ probe data points, and stationary vehicle detectors in three cities over the span of two years. While stationary vehicle detectors are the most accurate way to capture traffic volume, they are only available in few locations. Traffic4cast 2022 explores models that have the ability to generalize loosely related temporal vertex data on just a few nodes to predict dynamic future traffic states on the edges of the entire road graph. In the core challenge, participants are invited to predict the likelihoods of three congestion classes derived from the speed levels in the GPS data for the entire road graph in three cities 15 min into the future. We only provide vehicle count data from spatially sparse stationary vehicle detectors in these three cities as model input for this task. The data are aggregated in 15 min time bins for one hour prior to the prediction time. For the extended challenge, participants are tasked to predict the average travel times on super-segments 15 min into the future - super-segments are longer sequences of road segments in the graph. The competition results provide an important advance in the prediction of complex city-wide traffic states just from publicly available sparse vehicle data and without the need for large amounts of real-time floating vehicle data.
A remark on a paper of Krotov and Hopfield [arXiv:2008.06996]
Tang, Fei, Kopp, Michael
In their recent paper titled "Large Associative Memory Problem in Neurobiology and Machine Learning" [arXiv:2008.06996] the authors gave a biologically plausible microscopic theory from which one can recover many dense associative memory models discussed in the literature. We show that the layers of the recent "MLP-mixer" [arXiv:2105.01601] as well as the essentially equivalent model in [arXiv:2105.02723] are amongst them.
AIBench Training: Balanced Industry-Standard AI Training Benchmarking
Tang, Fei, Gao, Wanling, Zhan, Jianfeng, Lan, Chuanxin, Wen, Xu, Wang, Lei, Luo, Chunjie, Dai, Jiahui, Cao, Zheng, Xiong, Xingwang, Jiang, Zihan, Hao, Tianshu, Fan, Fanda, Zhang, Fan, Huang, Yunyou, Chen, Jianan, Du, Mengjia, Ren, Rui, Zheng, Chen, Zheng, Daoyi, Tang, Haoning, Zhan, Kunlin, Wang, Biao, Kong, Defei, Yu, Minghe, Tan, Chongkang, Li, Huan, Tian, Xinhui, Li, Yatao, Lu, Gang, Shao, Junchao, Wang, Zhenyu, Wang, Xiaoyu, Ye, Hainan
Earlier-stage evaluations of a new AI architecture/system need affordable AI benchmarks, while using a few AI component benchmarks alone in the other stages may lead to misleading conclusions. This paper proposes a balanced benchmarking methodology. Performing an exhaustive survey on Internet service AI domains, we identify and implement seventeen representative AI tasks with the state-of-the-art models to guarantee the diversity and representativeness of the benchmarks. Meanwhile, we keep a benchmark subset to a minimum for affordability. We contribute by far the most comprehensive AI training benchmark suite with seventeen industry partners. The evaluations show: (1) AIBench Training outperforms MLPerf Training in terms of the diversity and representativeness of model complexity, computational cost, convergent rate, computation and memory access patterns, and hotspot functions; (2) With respect to the AIBench full benchmarks, its subset shortens the benchmarking cost by 54%, while maintaining the primary workload characteristics; (3) The performance ranking shows the single-purpose AI accelerator like TPU with the optimized TensorFlow framework performs better than that of GPUs while losing the latters' general support for a variety of AI models. The AIBench Training specifications, source code, testbed, and performance numbers are publicly available from the web site http://www.benchcouncil.org/AIBench/index.html.
AIBench: An Industry Standard Internet Service AI Benchmark Suite
Gao, Wanling, Tang, Fei, Wang, Lei, Zhan, Jianfeng, Lan, Chunxin, Luo, Chunjie, Huang, Yunyou, Zheng, Chen, Dai, Jiahui, Cao, Zheng, Zheng, Daoyi, Tang, Haoning, Zhan, Kunlin, Wang, Biao, Kong, Defei, Wu, Tong, Yu, Minghe, Tan, Chongkang, Li, Huan, Tian, Xinhui, Li, Yatao, Shao, Junchao, Wang, Zhenyu, Wang, Xiaoyu, Ye, Hainan
Today's Internet Services are undergoing fundamental changes and shifting to an intelligent computing era where AI is widely employed to augment services. In this context, many innovative AI algorithms, systems, and architectures are proposed, and thus the importance of benchmarking and evaluating them rises. However, modern Internet services adopt a microservice-based architecture and consist of various modules. The diversity of these modules and complexity of execution paths, the massive scale and complex hierarchy of datacenter infrastructure, the confidential issues of data sets and workloads pose great challenges to benchmarking. In this paper, we present the first industry-standard Internet service AI benchmark suite---AIBench with seventeen industry partners, including several top Internet service providers. AIBench provides a highly extensible, configurable, and flexible benchmark framework that contains loosely coupled modules. We identify sixteen prominent AI problem domains like learning to rank, each of which forms an AI component benchmark, from three most important Internet service domains: search engine, social network, and e-commerce, which is by far the most comprehensive AI benchmarking effort. On the basis of the AIBench framework, abstracting the real-world data sets and workloads from one of the top e-commerce providers, we design and implement the first end-to-end Internet service AI benchmark, which contains the primary modules in the critical paths of an industry scale application and is scalable to deploy on different cluster scales. The specifications, source code, and performance numbers are publicly available from the benchmark council web site http://www.benchcouncil.org/AIBench/index.html.