Tang, Fan
Interactive Visual Assessment for Text-to-Image Generation Models
Mi, Xiaoyue, Tang, Fan, Cao, Juan, Sheng, Qiang, Huang, Ziyao, Li, Peng, Liu, Yang, Lee, Tong-Yee
Visual generation models have achieved remarkable progress in computer graphics applications but still face significant challenges in real-world deployment. Current assessment approaches for visual generation tasks typically follow an isolated three-phase framework: test input collection, model output generation, and user assessment. These fashions suffer from fixed coverage, evolving difficulty, and data leakage risks, limiting their effectiveness in comprehensively evaluating increasingly complex generation models. To address these limitations, we propose DyEval, an LLM-powered dynamic interactive visual assessment framework that facilitates collaborative evaluation between humans and generative models for text-to-image systems. DyEval features an intuitive visual interface that enables users to interactively explore and analyze model behaviors, while adaptively generating hierarchical, fine-grained, and diverse textual inputs to continuously probe the capability boundaries of the models based on their feedback. Additionally, to provide interpretable analysis for users to further improve tested models, we develop a contextual reflection module that mines failure triggers of test inputs and reflects model potential failure patterns supporting in-depth analysis using the logical reasoning ability of LLM. Qualitative and quantitative experiments demonstrate that DyEval can effectively help users identify max up to 2.56 times generation failures than conventional methods, and uncover complex and rare failure patterns, such as issues with pronoun generation and specific cultural context generation. Our framework provides valuable insights for improving generative models and has broad implications for advancing the reliability and capabilities of visual generation systems across various domains.
HeadRouter: A Training-free Image Editing Framework for MM-DiTs by Adaptively Routing Attention Heads
Xu, Yu, Tang, Fan, Cao, Juan, Zhang, Yuxin, Kong, Xiaoyu, Li, Jintao, Deussen, Oliver, Lee, Tong-Yee
Diffusion Transformers (DiTs) have exhibited robust capabilities in image generation tasks. However, accurate text-guided image editing for multimodal DiTs (MM-DiTs) still poses a significant challenge. Unlike UNet-based structures that could utilize self/cross-attention maps for semantic editing, MM-DiTs inherently lack support for explicit and consistent incorporated text guidance, resulting in semantic misalignment between the edited results and texts. In this study, we disclose the sensitivity of different attention heads to different image semantics within MM-DiTs and introduce HeadRouter, a training-free image editing framework that edits the source image by adaptively routing the text guidance to different attention heads in MM-DiTs. Furthermore, we present a dual-token refinement module to refine text/image token representations for precise semantic guidance and accurate region expression. Experimental results on multiple benchmarks demonstrate HeadRouter's performance in terms of editing fidelity and image quality.
CreativeSynth: Creative Blending and Synthesis of Visual Arts based on Multimodal Diffusion
Huang, Nisha, Dong, Weiming, Zhang, Yuxin, Tang, Fan, Li, Ronghui, Ma, Chongyang, Li, Xiu, Xu, Changsheng
Large-scale text-to-image generative models have made impressive strides, showcasing their ability to synthesize a vast array of high-quality images. However, adapting these models for artistic image editing presents two significant challenges. Firstly, users struggle to craft textual prompts that meticulously detail visual elements of the input image. Secondly, prevalent models, when effecting modifications in specific zones, frequently disrupt the overall artistic style, complicating the attainment of cohesive and aesthetically unified artworks. To surmount these obstacles, we build the innovative unified framework CreativeSynth, which is based on a diffusion model with the ability to coordinate multimodal inputs and multitask in the field of artistic image generation. By integrating multimodal features with customized attention mechanisms, CreativeSynth facilitates the importation of real-world semantic content into the domain of art through inversion and real-time style transfer. This allows for the precise manipulation of image style and content while maintaining the integrity of the original model parameters. Rigorous qualitative and quantitative evaluations underscore that CreativeSynth excels in enhancing artistic images' fidelity and preserves their innate aesthetic essence. By bridging the gap between generative models and artistic finesse, CreativeSynth becomes a custom digital palette.
Topology-Preserving Adversarial Training
Mi, Xiaoyue, Tang, Fan, Weng, Yepeng, Wang, Danding, Cao, Juan, Tang, Sheng, Li, Peng, Liu, Yang
Despite the effectiveness in improving the robustness of neural networks, adversarial training has suffered from the natural accuracy degradation problem, i.e., accuracy on natural samples has reduced significantly. In this study, we reveal that natural accuracy degradation is highly related to the disruption of the natural sample topology in the representation space by quantitative and qualitative experiments. Based on this observation, we propose Topology-pReserving Adversarial traINing (TRAIN) to alleviate the problem by preserving the topology structure of natural samples from a standard model trained only on natural samples during adversarial training. As an additional regularization, our method can easily be combined with various popular adversarial training algorithms in a plug-and-play manner, taking advantage of both sides. Extensive experiments on CIFAR-10, CIFAR-100, and Tiny ImageNet show that our proposed method achieves consistent and significant improvements over various strong baselines in most cases. Specifically, without additional data, our proposed method achieves up to 8.78% improvement in natural accuracy and 4.50% improvement in robust accuracy.
Adversarial Robust Memory-Based Continual Learner
Mi, Xiaoyue, Tang, Fan, Yang, Zonghan, Wang, Danding, Cao, Juan, Li, Peng, Liu, Yang
Despite the remarkable advances that have been made in continual learning, the adversarial vulnerability of such methods has not been fully discussed. We delve into the adversarial robustness of memory-based continual learning algorithms and observe limited robustness improvement by directly applying adversarial training techniques. Preliminary studies reveal the twin challenges for building adversarial robust continual learners: accelerated forgetting in continual learning and gradient obfuscation in adversarial robustness. In this study, we put forward a novel adversarial robust memory-based continual learner that adjusts data logits to mitigate the forgetting of pasts caused by adversarial samples. Furthermore, we devise a gradient-based data selection mechanism to overcome the gradient obfuscation caused by limited stored data. The proposed approach can widely integrate with existing memory-based continual learning as well as adversarial training algorithms in a plug-and-play way. Extensive experiments on Split-CIFAR10/100 and Split-Tiny-ImageNet demonstrate the effectiveness of our approach, achieving up to 8.13% higher accuracy for adversarial data.
Arbitrary Style Transfer via Multi-Adaptation Network
Deng, Yingying, Tang, Fan, Dong, Weiming, Sun, Wen, Huang, Feiyue, Xu, Changsheng
Arbitrary style transfer is a significant topic with research value and application prospect. A desired style transfer, given a content image and referenced style painting, would render the content image with the color tone and vivid stroke patterns of the style painting while synchronously maintaining the detailed content structure information. Style transfer approaches would initially learn content and style representations of the content and style references and then generate the stylized images guided by these representations. In this paper, we propose the multi-adaptation network which involves two self-adaptation (SA) modules and one co-adaptation (CA) module: the SA modules adaptively disentangle the content and style representations, i.e., content SA module uses position-wise self-attention to enhance content representation and style SA module uses channel-wise self-attention to enhance style representation; the CA module rearranges the distribution of style representation based on content representation distribution by calculating the local similarity between the disentangled content and style features in a non-local fashion. Moreover, a new disentanglement loss function enables our network to extract main style patterns and exact content structures to adapt to various input images, respectively. Various qualitative and quantitative experiments demonstrate that the proposed multi-adaptation network leads to better results than the state-of-the-art style transfer methods.