Tang, Daniel
Free-Mask: A Novel Paradigm of Integration Between the Segmentation Diffusion Model and Image Editing to Improve Segmentation Ability
Gao, Bo, Xing, Fangxu, Tang, Daniel
Current semantic segmentation models typically require a substantial amount of manually annotated data, a process that is both time-consuming and resource-intensive. Alternatively, leveraging advanced text-to-image models such as Midjourney and Stable Diffusion has emerged as an efficient strategy, enabling the automatic generation of synthetic data in place of manual annotations. However, previous methods have been limited to generating single-instance images, as the generation of multiple instances with Stable Diffusion has proven unstable. To address this limitation and expand the scope and diversity of synthetic datasets, we propose a framework \textbf{Free-Mask} that combines a Diffusion Model for segmentation with advanced image editing capabilities, allowing for the integration of multiple objects into images via text-to-image models. Our method facilitates the creation of highly realistic datasets that closely emulate open-world environments while generating accurate segmentation masks. It reduces the labor associated with manual annotation and also ensures precise mask generation. Experimental results demonstrate that synthetic data generated by \textbf{Free-Mask} enables segmentation models to outperform those trained on real data, especially in zero-shot settings. Notably, \textbf{Free-Mask} achieves new state-of-the-art results on previously unseen classes in the VOC 2012 benchmark.
Revisiting Code Similarity Evaluation with Abstract Syntax Tree Edit Distance
Song, Yewei, Lothritz, Cedric, Tang, Daniel, Bissyandรฉ, Tegawendรฉ F., Klein, Jacques
This paper revisits recent code similarity evaluation metrics, particularly focusing on the application of Abstract Syntax Tree (AST) editing distance in diverse programming languages. In particular, we explore the usefulness of these metrics and compare them to traditional sequence similarity metrics. Our experiments showcase the effectiveness of AST editing distance in capturing intricate code structures, revealing a high correlation with established metrics. Furthermore, we explore the strengths and weaknesses of AST editing distance and prompt-based GPT similarity scores in comparison to BLEU score, execution match, and Jaccard Similarity. We propose, optimize, and publish an adaptable metric that demonstrates effectiveness across all tested languages, representing an enhanced version of Tree Similarity of Edit Distance (TSED).
Automatically Extracting Information in Medical Dialogue: Expert System And Attention for Labelling
Wang, Xinshi, Tang, Daniel
Medical dialogue information extraction is becoming an increasingly significant problem in modern medical care. It is difficult to extract key information from electronic medical records (EMRs) due to their large numbers. Previously, researchers proposed attention-based models for retrieving features from EMRs, but their limitations were reflected in their inability to recognize different categories in medical dialogues. In this paper, we propose a novel model, Expert System and Attention for Labelling (ESAL). We use mixture of experts and pre-trained BERT to retrieve the semantics of different categories, enabling the model to fuse the differences between them. In our experiment, ESAL was applied to a public dataset and the experimental results indicated that ESAL significantly improved the performance of Medical Information Classification.
Emotion Detection in Unfix-length-Context Conversation
Zhang, Xiaochen, Tang, Daniel
We leverage different context windows when predicting the emotion of different utterances. New modules are included to realize variable-length context: 1) two speaker-aware units, which explicitly model inner- and inter-speaker dependencies to form distilled conversational context, and 2) a top-k normalization layer, which determines the most proper context windows from the conversational context to predict emotion. Experiments and ablation studies show that our approach outperforms several strong baselines on three public datasets.
HieNet: Bidirectional Hierarchy Framework for Automated ICD Coding
Wang, Shi, Tang, Daniel, Zhang, Luchen, Li, Huilin, Han, Ding
International Classification of Diseases (ICD) is a set of classification codes for medical records. Automated ICD coding, which assigns unique International Classification of Diseases codes with each medical record, is widely used recently for its efficiency and error-prone avoidance. However, there are challenges that remain such as heterogeneity, label unbalance, and complex relationships between ICD codes. In this work, we proposed a novel Bidirectional Hierarchy Framework(HieNet) to address the challenges. Specifically, a personalized PageRank routine is developed to capture the co-relation of codes, a bidirectional hierarchy passage encoder to capture the codes' hierarchical representations, and a progressive predicting method is then proposed to narrow down the semantic searching space of prediction. We validate our method on two widely used datasets. Experimental results on two authoritative public datasets demonstrate that our proposed method boosts the state-of-the-art performance by a large margin.