Goto

Collaborating Authors

 Tang, Chengliang


Wasserstein Distributional Learning

arXiv.org Machine Learning

Learning conditional densities and identifying factors that influence the entire distribution are vital tasks in data-driven applications. Conventional approaches work mostly with summary statistics, and are hence inadequate for a comprehensive investigation. Recently, there have been developments on functional regression methods to model density curves as functional outcomes. A major challenge for developing such models lies in the inherent constraint of non-negativity and unit integral for the functional space of density outcomes. To overcome this fundamental issue, we propose Wasserstein Distributional Learning (WDL), a flexible density-on-scalar regression modeling framework that starts with the Wasserstein distance $W_2$ as a proper metric for the space of density outcomes. We then introduce a heterogeneous and flexible class of Semi-parametric Conditional Gaussian Mixture Models (SCGMM) as the model class $\mathfrak{F} \otimes \mathcal{T}$. The resulting metric space $(\mathfrak{F} \otimes \mathcal{T}, W_2)$ satisfies the required constraints and offers a dense and closed functional subspace. For fitting the proposed model, we further develop an efficient algorithm based on Majorization-Minimization optimization with boosted trees. Compared with methods in the previous literature, WDL better characterizes and uncovers the nonlinear dependence of the conditional densities, and their derived summary statistics. We demonstrate the effectiveness of the WDL framework through simulations and real-world applications.


Weakly Supervised Learning Creates a Fusion of Modeling Cultures

arXiv.org Machine Learning

The past two decades have witnessed the great success of the algorithmic modeling framework advocated by Breiman et al. (2001). Nevertheless, the excellent prediction performance of these black-box models rely heavily on the availability of strong supervision, i.e. a large set of accurate and exact ground-truth labels. In practice, strong supervision can be unavailable or expensive, which calls for modeling techniques under weak supervision. In this comment, we summarize the key concepts in weakly supervised learning and discuss some recent developments in the field. Using algorithmic modeling alone under a weak supervision might lead to unstable and misleading results. A promising direction would be integrating the data modeling culture into such a framework.