Goto

Collaborating Authors

 Tang, Akaysha C.


An MEG Study of Response Latency and Variability in the Human Visual System During a Visual-Motor Integration Task

Neural Information Processing Systems

Human reaction times during sensory-motor tasks vary considerably. To begin to understand how this variability arises, we examined neuronal populational response time variability at early versus late visual processing stages. The conventional view is that precise temporal information is gradually lost as information is passed through a layered network of mean-rate "units." We tested in humans whether neuronal populations at different processing stages behave like mean-rate "units". A blind source separation algorithm was applied to MEG signals from sensory-motor integration tasks. Response time latency and variability for multiple visual sources were estimated by detecting single-trial stimulus-locked events for each source.



Cholinergic Modulation Preserves Spike Timing Under Physiologically Realistic Fluctuating Input

Neural Information Processing Systems

Recently, there has been a vigorous debate concerning the nature of neural coding (Rieke et al. 1996; Stevens and Zador 1995; Shadlen and Newsome 1994). The prevailing viewhas been that the mean firing rate conveys all information about the sensory stimulus in a spike train and the precise timing of the individual spikes is noise. This belief is, in part, based on a lack of correlation between the precise timing ofthe spikes and the sensory qualities of the stimulus under study, particularly, on a lack of spike timing repeatability when identical stimulation is delivered. This view has been challenged by a number of recent studies, in which highly repeatable temporal patterns of spikes can be observed both in vivo (Bair and Koch 1996; Abeles et al. 1993) and in vitro (Mainen and Sejnowski 1994). Furthermore, application ofinformation theory to the coding problem in the frog and house fly (Bialek et al. 1991; Bialek and Rieke 1992) suggested that additional information could be extracted from spike timing. In the absence of direct evidence for a timing code in the cerebral cortex, the role of spike timing in neural coding remains controversial.


Cholinergic Modulation Preserves Spike Timing Under Physiologically Realistic Fluctuating Input

Neural Information Processing Systems

Recently, there has been a vigorous debate concerning the nature of neural coding (Rieke et al. 1996; Stevens and Zador 1995; Shadlen and Newsome 1994). The prevailing view has been that the mean firing rate conveys all information about the sensory stimulus in a spike train and the precise timing of the individual spikes is noise. This belief is, in part, based on a lack of correlation between the precise timing of the spikes and the sensory qualities of the stimulus under study, particularly, on a lack of spike timing repeatability when identical stimulation is delivered. This view has been challenged by a number of recent studies, in which highly repeatable temporal patterns of spikes can be observed both in vivo (Bair and Koch 1996; Abeles et al. 1993) and in vitro (Mainen and Sejnowski 1994). Furthermore, application of information theory to the coding problem in the frog and house fly (Bialek et al. 1991; Bialek and Rieke 1992) suggested that additional information could be extracted from spike timing. In the absence of direct evidence for a timing code in the cerebral cortex, the role of spike timing in neural coding remains controversial.