Tandon, Niket
First-Step Advantage: Importance of Starting Right in Multi-Step Math Reasoning
Jain, Kushal, Miller, Moritz, Tandon, Niket, Shridhar, Kumar
Language models can solve complex reasoning tasks better by learning to generate rationales for their predictions. Often these models know how to solve a task but their auto-regressive decoding nature leads to incorrect results if they start incorrectly. We observe that smaller models in particular when corrected, can solve a task that they would have otherwise struggled with. We demonstrate this phenomenon by using a larger model to guide smaller models, which leads to significantly improved performance (up to +24 points on the GSM8K dataset by 7B models). To assist smaller models in initiating the starting step, we propose QuestCoT, where a smaller model first asks itself how to start, before proceeding with a chain of reasoning. On various multistep mathematical reasoning datasets over multiple smaller models, we show that getting the right start can lead to significant performance gains across all models (gains of up to +6 points on GSM8K, +9 on SVAMP, +5 on ASDiv, and +7 on MultiArith).
PDDLEGO: Iterative Planning in Textual Environments
Zhang, Li, Jansen, Peter, Zhang, Tianyi, Clark, Peter, Callison-Burch, Chris, Tandon, Niket
Planning in textual environments have been shown to be a long-standing challenge even for current models. A recent, promising line of work uses LLMs to generate a formal representation of the environment that can be solved by a symbolic planner. However, existing methods rely on a fully-observed environment where all entity states are initially known, so a one-off representation can be constructed, leading to a complete plan. In contrast, we tackle partially-observed environments where there is initially no sufficient information to plan for the end-goal. We propose PDDLEGO that iteratively construct a planning representation that can lead to a partial plan for a given sub-goal. By accomplishing the sub-goal, more information is acquired to augment the representation, eventually achieving the end-goal. We show that plans produced by few-shot PDDLEGO are 43% more efficient than generating plans end-to-end on the Coin Collector simulation, with strong performance (98%) on the more complex Cooking World simulation where end-to-end LLMs fail to generate coherent plans (4%).
WorldValuesBench: A Large-Scale Benchmark Dataset for Multi-Cultural Value Awareness of Language Models
Zhao, Wenlong, Mondal, Debanjan, Tandon, Niket, Dillion, Danica, Gray, Kurt, Gu, Yuling
The awareness of multi-cultural human values is critical to the ability of language models (LMs) to generate safe and personalized responses. However, this awareness of LMs has been insufficiently studied, since the computer science community lacks access to the large-scale real-world data about multi-cultural values. In this paper, we present WorldValuesBench, a globally diverse, large-scale benchmark dataset for the multi-cultural value prediction task, which requires a model to generate a rating response to a value question based on demographic contexts. Our dataset is derived from an influential social science project, World Values Survey (WVS), that has collected answers to hundreds of value questions (e.g., social, economic, ethical) from 94,728 participants worldwide. We have constructed more than 20 million examples of the type "(demographic attributes, value question) $\rightarrow$ answer" from the WVS responses. We perform a case study using our dataset and show that the task is challenging for strong open and closed-source models. On merely $11.1\%$, $25.0\%$, $72.2\%$, and $75.0\%$ of the questions, Alpaca-7B, Vicuna-7B-v1.5, Mixtral-8x7B-Instruct-v0.1, and GPT-3.5 Turbo can respectively achieve $<0.2$ Wasserstein 1-distance from the human normalized answer distributions. WorldValuesBench opens up new research avenues in studying limitations and opportunities in multi-cultural value awareness of LMs.
Calibrating Large Language Models with Sample Consistency
Lyu, Qing, Shridhar, Kumar, Malaviya, Chaitanya, Zhang, Li, Elazar, Yanai, Tandon, Niket, Apidianaki, Marianna, Sachan, Mrinmaya, Callison-Burch, Chris
Accurately gauging the confidence level of Large Language Models' (LLMs) predictions is pivotal for their reliable application. However, LLMs are often uncalibrated inherently and elude conventional calibration techniques due to their proprietary nature and massive scale. In this work, we explore the potential of deriving confidence from the distribution of multiple randomly sampled model generations, via three measures of consistency. We perform an extensive evaluation across various open and closed-source models on nine reasoning datasets. Results show that consistency-based calibration methods outperform existing post-hoc approaches. Meanwhile, we find that factors such as intermediate explanations, model scaling, and larger sample sizes enhance calibration, while instruction-tuning makes calibration more difficult. Moreover, confidence scores obtained from consistency have the potential to enhance model performance. Finally, we offer practical guidance on choosing suitable consistency metrics for calibration, tailored to the characteristics of various LMs.
In-Context Principle Learning from Mistakes
Zhang, Tianjun, Madaan, Aman, Gao, Luyu, Zheng, Steven, Mishra, Swaroop, Yang, Yiming, Tandon, Niket, Alon, Uri
In-context learning (ICL, also known as few-shot prompting) has been the standard method of adapting LLMs to downstream tasks, by learning from a few input-output examples. Nonetheless, all ICL-based approaches only learn from correct input-output pairs. In this paper, we revisit this paradigm, by learning more from the few given input-output examples. We introduce Learning Principles (LEAP): First, we intentionally induce the model to make mistakes on these few examples; then we reflect on these mistakes, and learn explicit task-specific "principles" from them, which help solve similar problems and avoid common mistakes; finally, we prompt the model to answer unseen test questions using the original few-shot examples and these learned general principles. We evaluate LEAP on a wide range of benchmarks, including multi-hop question answering (Hotpot QA), textual QA (DROP), Big-Bench Hard reasoning, and math problems (GSM8K and MATH); in all these benchmarks, LEAP improves the strongest available LLMs such as GPT-3.5-turbo, GPT-4, GPT-4 turbo and Claude-2.1. For example, LEAP improves over the standard few-shot prompting using GPT-4 by 7.5% in DROP, and by 3.3% in HotpotQA. Importantly, LEAP does not require any more input or examples than the standard few-shot prompting settings.
One Size Does Not Fit All: Customizing Open-Domain Procedures
Lal, Yash Kumar, Zhang, Li, Brahman, Faeze, Majumder, Bodhisattwa Prasad, Clark, Peter, Tandon, Niket
How-to procedures, such as how to plant a garden, are ubiquitous. But one size does not fit all - humans often need to customize these procedural plans according to their specific needs, e.g., planting a garden without pesticides. While LLMs can fluently generate generic procedures, we present the first study on how well LLMs can customize open-domain procedures. We introduce CustomPlans, a probe dataset of customization hints that encodes diverse user needs for open-domain How-to procedures. Using LLMs as CustomizationAgent and ExecutionAgent in different settings, we establish their abilities to perform open-domain procedure customization. Human evaluation shows that using these agents in a Sequential setting is the best, but they are good enough only ~51% of the time. Error analysis shows that LLMs do not sufficiently address user customization needs in their generated procedures.
Editing Common Sense in Transformers
Gupta, Anshita, Mondal, Debanjan, Sheshadri, Akshay Krishna, Zhao, Wenlong, Li, Xiang Lorraine, Wiegreffe, Sarah, Tandon, Niket
Editing model parameters directly in Transformers makes updating open-source transformer-based models possible without re-training (Meng et al., 2023). However, these editing methods have only been evaluated on statements about encyclopedic knowledge with a single correct answer. Commonsense knowledge with multiple correct answers, e.g., an apple can be green or red but not transparent, has not been studied but is as essential for enhancing transformers' reliability and usefulness. In this paper, we investigate whether commonsense judgments are causally associated with localized, editable parameters in Transformers, and we provide an affirmative answer. We find that directly applying the MEMIT editing algorithm results in sub-par performance and improve it for the commonsense domain by varying edit tokens and improving the layer selection strategy, i.e., $MEMIT_{CSK}$. GPT-2 Large and XL models edited using $MEMIT_{CSK}$ outperform best-fine-tuned baselines by 10.97% and 10.73% F1 scores on PEP3k and 20Q datasets. In addition, we propose a novel evaluation dataset, PROBE SET, that contains unaffected and affected neighborhoods, affected paraphrases, and affected reasoning challenges. $MEMIT_{CSK}$ performs well across the metrics while fine-tuning baselines show significant trade-offs between unaffected and affected metrics. These results suggest a compelling future direction for incorporating feedback about common sense into Transformers through direct model editing.
CLIN: A Continually Learning Language Agent for Rapid Task Adaptation and Generalization
Majumder, Bodhisattwa Prasad, Mishra, Bhavana Dalvi, Jansen, Peter, Tafjord, Oyvind, Tandon, Niket, Zhang, Li, Callison-Burch, Chris, Clark, Peter
Language agents have shown some ability to interact with an external environment, e.g., a virtual world such as ScienceWorld, to perform complex tasks, e.g., growing a plant, without the startup costs of reinforcement learning. However, despite their zero-shot capabilities, these agents to date do not continually improve over time beyond performance refinement on a specific task. Here we present CLIN, the first language-based agent to achieve this, so that it continually improves over multiple trials, including when both the environment and task are varied, and without requiring parameter updates. Our approach is to use a persistent, dynamic, textual memory centered on causal abstractions (rather than general "helpful hints") that is regularly updated after each trial so that the agent gradually learns useful knowledge for new trials. In the ScienceWorld benchmark, CLIN is able to continually improve on repeated trials on the same task and environment, outperforming state-of-the-art reflective language agents like Reflexion by 23 absolute points. CLIN can also transfer its learning to new environments (or new tasks), improving its zero-shot performance by 4 points (13 for new tasks) and can further improve performance there through continual memory updates, enhancing performance by an additional 17 points (7 for new tasks). This suggests a new architecture for agents built on frozen models that can still continually and rapidly improve over time.
RL4F: Generating Natural Language Feedback with Reinforcement Learning for Repairing Model Outputs
Akyürek, Afra Feyza, Akyürek, Ekin, Madaan, Aman, Kalyan, Ashwin, Clark, Peter, Wijaya, Derry, Tandon, Niket
Despite their unprecedented success, even the largest language models make mistakes. Similar to how humans learn and improve using feedback, previous work proposed providing language models with natural language feedback to guide them in repairing their outputs. Because human-generated critiques are expensive to obtain, researchers have devised learned critique generators in lieu of human critics while assuming one can train downstream models to utilize generated feedback. However, this approach does not apply to black-box or limited access models such as ChatGPT, as they cannot be fine-tuned. Moreover, in the era of large general-purpose language agents, fine-tuning is neither computationally nor spatially efficient as it results in multiple copies of the network. In this work, we introduce RL4F (Reinforcement Learning for Feedback), a multi-agent collaborative framework where the critique generator is trained to maximize end-task performance of GPT-3, a fixed model more than 200 times its size. RL4F produces critiques that help GPT-3 revise its outputs. We study three datasets for action planning, summarization and alphabetization and show relative improvements up to 10% in multiple text similarity metrics over other learned, retrieval-augmented or prompting-based critique generators.
Let Me Teach You: Pedagogical Foundations of Feedback for Language Models
Borges, Beatriz, Tandon, Niket, Käser, Tanja, Bosselut, Antoine
Natural Language Feedback (NLF) is an increasingly popular avenue to align Large Language Models (LLMs) to human preferences. Despite the richness and diversity of the information it can convey, NLF is often hand-designed and arbitrary. In a different world, research in pedagogy has long established several effective feedback models. In this opinion piece, we compile ideas from pedagogy to introduce FELT, a feedback framework for LLMs that outlines the various characteristics of the feedback space, and a feedback content taxonomy based on these variables. Our taxonomy offers both a general mapping of the feedback space, as well as pedagogy-established discrete categories, allowing us to empirically demonstrate the impact of different feedback types on revised generations. In addition to streamlining existing NLF designs, FELT also brings out new, unexplored directions for research in NLF. We make our taxonomy available to the community, providing guides and examples for mapping our categorizations to future resources.