Goto

Collaborating Authors

 Tanaka, Tomohiro


Constant Rate Schedule: Constant-Rate Distributional Change for Efficient Training and Sampling in Diffusion Models

arXiv.org Artificial Intelligence

We propose a noise schedule that ensures a constant rate of change in the probability distribution of diffused data throughout the diffusion process. To obtain this noise schedule, we measure the rate of change in the probability distribution of the forward process and use it to determine the noise schedule before training diffusion models. The functional form of the noise schedule is automatically determined and tailored to each dataset and type of diffusion model. We evaluate the effectiveness of our noise schedule on unconditional and class-conditional image generation tasks using the LSUN (bedroom/church/cat/horse), ImageNet, and FFHQ datasets. Through extensive experiments, we confirmed that our noise schedule broadly improves the performance of the diffusion models regardless of the dataset, sampler, number of function evaluations, or type of diffusion model. Image generation is one of the most challenging tasks in computer vision, and a variety of deep generative models have been proposed. Generative adversarial networks (GANs) (Goodfellow et al., 2014) have long been the leading models for high-quality image generation. These generative models achieved success across a wide range of fields beyond image generation, such as audio (van den Oord et al., 2016; Kong et al., 2021) and 3D-point cloud generation (Yang et al., 2019). The performance of generative models is measured using three metrics: sampling speed, sample quality, and mode coverage (Xiao et al., 2022). Despite the extensive research conducted, satisfying these requirements simultaneously is challenging.


SpeechGLUE: How Well Can Self-Supervised Speech Models Capture Linguistic Knowledge?

arXiv.org Artificial Intelligence

Self-supervised learning (SSL) for speech representation has been successfully applied in various downstream tasks, such as speech and speaker recognition. More recently, speech SSL models have also been shown to be beneficial in advancing spoken language understanding tasks, implying that the SSL models have the potential to learn not only acoustic but also linguistic information. In this paper, we aim to clarify if speech SSL techniques can well capture linguistic knowledge. For this purpose, we introduce SpeechGLUE, a speech version of the General Language Understanding Evaluation (GLUE) benchmark. Since GLUE comprises a variety of natural language understanding tasks, SpeechGLUE can elucidate the degree of linguistic ability of speech SSL models. Experiments demonstrate that speech SSL models, although inferior to text-based SSL models, perform better than baselines, suggesting that they can acquire a certain amount of general linguistic knowledge from just unlabeled speech data.


Transfer Learning from Pre-trained Language Models Improves End-to-End Speech Summarization

arXiv.org Artificial Intelligence

End-to-end speech summarization (E2E SSum) directly summarizes input speech into easy-to-read short sentences with a single model. This approach is promising because it, in contrast to the conventional cascade approach, can utilize full acoustical information and mitigate to the propagation of transcription errors. However, due to the high cost of collecting speech-summary pairs, an E2E SSum model tends to suffer from training data scarcity and output unnatural sentences. To overcome this drawback, we propose for the first time to integrate a pre-trained language model (LM), which is highly capable of generating natural sentences, into the E2E SSum decoder via transfer learning. In addition, to reduce the gap between the independently pre-trained encoder and decoder, we also propose to transfer the baseline E2E SSum encoder instead of the commonly used automatic speech recognition encoder. Experimental results show that the proposed model outperforms baseline and data augmented models.


End-to-End Joint Target and Non-Target Speakers ASR

arXiv.org Artificial Intelligence

This paper proposes a novel automatic speech recognition (ASR) system that can transcribe individual speaker's speech while identifying whether they are target or non-target speakers from multi-talker overlapped speech. Target-speaker ASR systems are a promising way to only transcribe a target speaker's speech by enrolling the target speaker's information. However, in conversational ASR applications, transcribing both the target speaker's speech and non-target speakers' ones is often required to understand interactive information. To naturally consider both target and non-target speakers in a single ASR model, our idea is to extend autoregressive modeling-based multi-talker ASR systems to utilize the enrollment speech of the target speaker. Our proposed ASR is performed by recursively generating both textual tokens and tokens that represent target or non-target speakers. Our experiments demonstrate the effectiveness of our proposed method.


Exploration of Language Dependency for Japanese Self-Supervised Speech Representation Models

arXiv.org Artificial Intelligence

Self-supervised learning (SSL) has been dramatically successful not only in monolingual but also in cross-lingual settings. However, since the two settings have been studied individually in general, there has been little research focusing on how effective a cross-lingual model is in comparison with a monolingual model. In this paper, we investigate this fundamental question empirically with Japanese automatic speech recognition (ASR) tasks. First, we begin by comparing the ASR performance of cross-lingual and monolingual models for two different language tasks while keeping the acoustic domain as identical as possible. Then, we examine how much unlabeled data collected in Japanese is needed to achieve performance comparable to a cross-lingual model pre-trained with tens of thousands of hours of English and/or multilingual data. Finally, we extensively investigate the effectiveness of SSL in Japanese and demonstrate state-of-the-art performance on multiple ASR tasks. Since there is no comprehensive SSL study for Japanese, we hope this study will guide Japanese SSL research.


Leveraging Large Text Corpora for End-to-End Speech Summarization

arXiv.org Artificial Intelligence

End-to-end speech summarization (E2E SSum) is a technique to directly generate summary sentences from speech. Compared with the cascade approach, which combines automatic speech recognition (ASR) and text summarization models, the E2E approach is more promising because it mitigates ASR errors, incorporates nonverbal information, and simplifies the overall system. However, since collecting a large amount of paired data (i.e., speech and summary) is difficult, the training data is usually insufficient to train a robust E2E SSum system. In this paper, we present two novel methods that leverage a large amount of external text summarization data for E2E SSum training. The first technique is to utilize a text-to-speech (TTS) system to generate synthesized speech, which is used for E2E SSum training with the text summary. The second is a TTS-free method that directly inputs phoneme sequence instead of synthesized speech to the E2E SSum model. Experiments show that our proposed TTS- and phoneme-based methods improve several metrics on the How2 dataset. In particular, our best system outperforms a previous state-of-the-art one by a large margin (i.e., METEOR score improvements of more than 6 points). To the best of our knowledge, this is the first work to use external language resources for E2E SSum. Moreover, we report a detailed analysis of the How2 dataset to confirm the validity of our proposed E2E SSum system.


Ladder Siamese Network: a Method and Insights for Multi-level Self-Supervised Learning

arXiv.org Artificial Intelligence

Siamese-network-based self-supervised learning (SSL) suffers from slow convergence and instability in training. To alleviate this, we propose a framework to exploit intermediate self-supervisions in each stage of deep nets, called the Ladder Siamese Network. Our self-supervised losses encourage the intermediate layers to be consistent with different data augmentations to single samples, which facilitates training progress and enhances the discriminative ability of the intermediate layers themselves. While some existing work has already utilized multi-level self supervisions in SSL, ours is different in that 1) we reveal its usefulness with non-contrastive Siamese frameworks in both theoretical and empirical viewpoints, and 2) ours improves image-level classification, instance-level detection, and pixel-level segmentation simultaneously. Experiments show that the proposed framework can improve BYOL baselines by 1.0% points in ImageNet linear classification, 1.2% points in COCO detection, and 3.1% points in PASCAL VOC segmentation. In comparison with the state-of-the-art methods, our Ladder-based model achieves competitive and balanced performances in all tested benchmarks without causing large degradation in one.