Tan, Zhiyu
IPO: Iterative Preference Optimization for Text-to-Video Generation
Yang, Xiaomeng, Tan, Zhiyu, Nie, Xuecheng, Li, Hao
Video foundation models have achieved significant advancement with the help of network upgrade as well as model scale-up. However, they are still hard to meet requirements of applications due to unsatisfied generation quality. To solve this problem, we propose to align video foundation models with human preferences from the perspective of post-training in this paper. Consequently, we introduce an Iterative Preference Optimization strategy to enhance generated video quality by incorporating human feedback. Specifically, IPO exploits a critic model to justify video generations for pairwise ranking as in Direct Preference Optimization or point-wise scoring as in Kahneman-Tversky Optimization. Given this, IPO optimizes video foundation models with guidance of signals from preference feedback, which helps improve generated video quality in subject consistency, motion smoothness and aesthetic quality, etc. In addition, IPO incorporates the critic model with the multi-modality large language model, which enables it to automatically assign preference labels without need of retraining or relabeling. In this way, IPO can efficiently perform multi-round preference optimization in an iterative manner, without the need of tediously manual labeling. Comprehensive experiments demonstrate that the proposed IPO can effectively improve the video generation quality of a pretrained model and help a model with only 2B parameters surpass the one with 5B parameters. Besides, IPO achieves new state-of-the-art performance on VBench benchmark. We will release our source codes, models as well as dataset to advance future research and applications.
EVALALIGN: Supervised Fine-Tuning Multimodal LLMs with Human-Aligned Data for Evaluating Text-to-Image Models
Tan, Zhiyu, Yang, Xiaomeng, Qin, Luozheng, Yang, Mengping, Zhang, Cheng, Li, Hao
The recent advancements in text-to-image generative models have been remarkable. Yet, the field suffers from a lack of evaluation metrics that accurately reflect the performance of these models, particularly lacking fine-grained metrics that can guide the optimization of the models. In this paper, we propose EvalAlign, a metric characterized by its accuracy, stability, and fine granularity. Our approach leverages the capabilities of Multimodal Large Language Models (MLLMs) pre-trained on extensive datasets. We develop evaluation protocols that focus on two key dimensions: image faithfulness and text-image alignment. Each protocol comprises a set of detailed, fine-grained instructions linked to specific scoring options, enabling precise manual scoring of the generated images. We Supervised Fine-Tune (SFT) the MLLM to align closely with human evaluative judgments, resulting in a robust evaluation model. Our comprehensive tests across 24 text-to-image generation models demonstrate that EvalAlign not only provides superior metric stability but also aligns more closely with human preferences than existing metrics, confirming its effectiveness and utility in model assessment.
Towards Effective Usage of Human-Centric Priors in Diffusion Models for Text-based Human Image Generation
Wang, Junyan, Sun, Zhenhong, Tan, Zhiyu, Chen, Xuanbai, Chen, Weihua, Li, Hao, Zhang, Cheng, Song, Yang
Vanilla text-to-image diffusion models struggle with generating accurate human images, commonly resulting in imperfect anatomies such as unnatural postures or disproportionate limbs.Existing methods address this issue mostly by fine-tuning the model with extra images or adding additional controls -- human-centric priors such as pose or depth maps -- during the image generation phase. This paper explores the integration of these human-centric priors directly into the model fine-tuning stage, essentially eliminating the need for extra conditions at the inference stage. We realize this idea by proposing a human-centric alignment loss to strengthen human-related information from the textual prompts within the cross-attention maps. To ensure semantic detail richness and human structural accuracy during fine-tuning, we introduce scale-aware and step-wise constraints within the diffusion process, according to an in-depth analysis of the cross-attention layer. Extensive experiments show that our method largely improves over state-of-the-art text-to-image models to synthesize high-quality human images based on user-written prompts. Project page: \url{https://hcplayercvpr2024.github.io}.
OVO: Open-Vocabulary Occupancy
Tan, Zhiyu, Dong, Zichao, Zhang, Cheng, Zhang, Weikun, Ji, Hang, Li, Hao
Semantic occupancy prediction aims to infer dense geometry and semantics of surroundings for an autonomous agent to operate safely in the 3D environment. Existing occupancy prediction methods are almost entirely trained on human-annotated volumetric data. Although of high quality, the generation of such 3D annotations is laborious and costly, restricting them to a few specific object categories in the training dataset. To address this limitation, this paper proposes Open Vocabulary Occupancy (OVO), a novel approach that allows semantic occupancy prediction of arbitrary classes but without the need for 3D annotations during training. Keys to our approach are (1) knowledge distillation from a pre-trained 2D open-vocabulary segmentation model to the 3D occupancy network, and (2) pixel-voxel filtering for high-quality training data generation. The resulting framework is simple, compact, and compatible with most state-of-the-art semantic occupancy prediction models. On NYUv2 and SemanticKITTI datasets, OVO achieves competitive performance compared to supervised semantic occupancy prediction approaches. Furthermore, we conduct extensive analyses and ablation studies to offer insights into the design of the proposed framework. Our code is publicly available at https://github.com/dzcgaara/OVO.