Goto

Collaborating Authors

 Tan, Zheng-Hua


xLSTM-SENet: xLSTM for Single-Channel Speech Enhancement

arXiv.org Artificial Intelligence

While attention-based architectures, such as Conformers, excel in speech enhancement, they face challenges such as scalability with respect to input sequence length. In contrast, the recently proposed Extended Long Short-Term Memory (xLSTM) architecture offers linear scalability. However, xLSTM-based models remain unexplored for speech enhancement. This paper introduces xLSTM-SENet, the first xLSTM-based single-channel speech enhancement system. A comparative analysis reveals that xLSTM-and notably, even LSTM-can match or outperform state-of-the-art Mamba- and Conformer-based systems across various model sizes in speech enhancement on the VoiceBank+Demand dataset. Through ablation studies, we identify key architectural design choices such as exponential gating and bidirectionality contributing to its effectiveness. Our best xLSTM-based model, xLSTM-SENet2, outperforms state-of-the-art Mamba- and Conformer-based systems on the Voicebank+DEMAND dataset.


Vocal Tract Length Warped Features for Spoken Keyword Spotting

arXiv.org Artificial Intelligence

In this paper, we propose several methods that incorporate vocal tract length (VTL) warped features for spoken keyword spotting (KWS). The first method, VTL-independent KWS, involves training a single deep neural network (DNN) that utilizes VTL features with various warping factors. During training, a specific VTL feature is randomly selected per epoch, allowing the exploration of VTL variations. During testing, the VTL features with different warping factors of a test utterance are scored against the DNN and combined with equal weight. In the second method scores the conventional features of a test utterance (without VTL warping) against the DNN. The third method, VTL-concatenation KWS, concatenates VTL warped features to form high-dimensional features for KWS. Evaluations carried out on the English Google Command dataset demonstrate that the proposed methods improve the accuracy of KWS.


Noise-Robust Target-Speaker Voice Activity Detection Through Self-Supervised Pretraining

arXiv.org Artificial Intelligence

Target-Speaker Voice Activity Detection (TS-VAD) is the task of detecting the presence of speech from a known target-speaker in an audio frame. Recently, deep neural network-based models have shown good performance in this task. However, training these models requires extensive labelled data, which is costly and time-consuming to obtain, particularly if generalization to unseen environments is crucial. To mitigate this, we propose a causal, Self-Supervised Learning (SSL) pretraining framework, called Denoising Autoregressive Predictive Coding (DN-APC), to enhance TS-VAD performance in noisy conditions. We also explore various speaker conditioning methods and evaluate their performance under different noisy conditions. Our experiments show that DN-APC improves performance in noisy conditions, with a general improvement of approx. 2% in both seen and unseen noise. Additionally, we find that FiLM conditioning provides the best overall performance. Representation analysis via tSNE plots reveals robust initial representations of speech and non-speech from pretraining. This underscores the effectiveness of SSL pretraining in improving the robustness and performance of TS-VAD models in noisy environments.


BiSSL: Bilevel Optimization for Self-Supervised Pre-Training and Fine-Tuning

arXiv.org Artificial Intelligence

In this work, we present BiSSL, a first-of-its-kind training framework that introduces bilevel optimization to enhance the alignment between the pretext pre-training and downstream fine-tuning stages in self-supervised learning. BiSSL formulates the pretext and downstream task objectives as the lower- and upper-level objectives in a bilevel optimization problem and serves as an intermediate training stage within the self-supervised learning pipeline. By more explicitly modeling the interdependence of these training stages, BiSSL facilitates enhanced information sharing between them, ultimately leading to a backbone parameter initialization that is better suited for the downstream task. We propose a training algorithm that alternates between optimizing the two objectives defined in BiSSL. Using a ResNet-18 backbone pre-trained with SimCLR on the STL10 dataset, we demonstrate that our proposed framework consistently achieves improved or competitive classification accuracies across various downstream image classification datasets compared to the conventional self-supervised learning pipeline. Qualitative analyses of the backbone features further suggest that BiSSL enhances the alignment of downstream features in the backbone prior to fine-tuning.


Audio Mamba: Selective State Spaces for Self-Supervised Audio Representations

arXiv.org Artificial Intelligence

Despite its widespread adoption as the prominent neural architecture, the Transformer has spurred several independent lines of work to address its limitations. One such approach is selective state space models, which have demonstrated promising results for language modelling. However, their feasibility for learning self-supervised, general-purpose audio representations is yet to be investigated. This work proposes Audio Mamba, a selective state space model for learning general-purpose audio representations from randomly masked spectrogram patches through self-supervision. Empirical results on ten diverse audio recognition downstream tasks show that the proposed models, pretrained on the AudioSet dataset, consistently outperform comparable self-supervised audio spectrogram transformer (SSAST) baselines by a considerable margin and demonstrate better performance in dataset size, sequence length and model size comparisons.


Noise-Robust Keyword Spotting through Self-supervised Pretraining

arXiv.org Artificial Intelligence

Voice assistants are now widely available, and to activate them a keyword spotting (KWS) algorithm is used. Modern KWS systems are mainly trained using supervised learning methods and require a large amount of labelled data to achieve a good performance. Leveraging unlabelled data through self-supervised learning (SSL) has been shown to increase the accuracy in clean conditions. This paper explores how SSL pretraining such as Data2Vec can be used to enhance the robustness of KWS models in noisy conditions, which is under-explored. Models of three different sizes are pretrained using different pretraining approaches and then fine-tuned for KWS. These models are then tested and compared to models trained using two baseline supervised learning methods, one being standard training using clean data and the other one being multi-style training (MTR). The results show that pretraining and fine-tuning on clean data is superior to supervised learning on clean data across all testing conditions, and superior to supervised MTR for testing conditions of SNR above 5 dB. This indicates that pretraining alone can increase the model's robustness. Finally, it is found that using noisy data for pretraining models, especially with the Data2Vec-denoising approach, significantly enhances the robustness of KWS models in noisy conditions.


Self-supervised Pretraining for Robust Personalized Voice Activity Detection in Adverse Conditions

arXiv.org Artificial Intelligence

In this paper, we propose the use of self-supervised pretraining on a large unlabelled data set to improve the performance of a personalized voice activity detection (VAD) model in adverse conditions. We pretrain a long short-term memory (LSTM)-encoder using the autoregressive predictive coding (APC) framework and fine-tune it for personalized VAD. We also propose a denoising variant of APC, with the goal of improving the robustness of personalized VAD. The trained models are systematically evaluated on both clean speech and speech contaminated by various types of noise at different SNR-levels and compared to a purely supervised model. Our experiments show that self-supervised pretraining not only improves performance in clean conditions, but also yields models which are more robust to adverse conditions compared to purely supervised learning.


Diffusion-Based Speech Enhancement in Matched and Mismatched Conditions Using a Heun-Based Sampler

arXiv.org Artificial Intelligence

Diffusion models are a new class of generative models that have recently been applied to speech enhancement successfully. Previous works have demonstrated their superior performance in mismatched conditions compared to state-of-the art discriminative models. However, this was investigated with a single database for training and another one for testing, which makes the results highly dependent on the particular databases. Moreover, recent developments from the image generation literature remain largely unexplored for speech enhancement. These include several design aspects of diffusion models, such as the noise schedule or the reverse sampler. In this work, we systematically assess the generalization performance of a diffusion-based speech enhancement model by using multiple speech, noise and binaural room impulse response (BRIR) databases to simulate mismatched acoustic conditions. We also experiment with a noise schedule and a sampler that have not been applied to speech enhancement before. We show that the proposed system substantially benefits from using multiple databases for training, and achieves superior performance compared to state-of-the-art discriminative models in both matched and mismatched conditions. We also show that a Heun-based sampler achieves superior performance at a smaller computational cost compared to a sampler commonly used for speech enhancement.


PAC-Bayes Generalisation Bounds for Dynamical Systems Including Stable RNNs

arXiv.org Machine Learning

In this paper, we derive a PAC-Bayes bound on the generalisation gap, in a supervised time-series setting for a special class of discrete-time non-linear dynamical systems. This class includes stable recurrent neural networks (RNN), and the motivation for this work was its application to RNNs. In order to achieve the results, we impose some stability constraints, on the allowed models. Here, stability is understood in the sense of dynamical systems. For RNNs, these stability conditions can be expressed in terms of conditions on the weights. We assume the processes involved are essentially bounded and the loss functions are Lipschitz. The proposed bound on the generalisation gap depends on the mixing coefficient of the data distribution, and the essential supremum of the data. Furthermore, the bound converges to zero as the dataset size increases. In this paper, we 1) formalize the learning problem, 2) derive a PAC-Bayesian error bound for such systems, 3) discuss various consequences of this error bound, and 4) show an illustrative example, with discussions on computing the proposed bound. Unlike other available bounds the derived bound holds for non i.i.d. data (time-series) and it does not grow with the number of steps of the RNN.


Investigating the Design Space of Diffusion Models for Speech Enhancement

arXiv.org Artificial Intelligence

Diffusion models are a new class of generative models that have shown outstanding performance in image generation literature. As a consequence, studies have attempted to apply diffusion models to other tasks, such as speech enhancement. A popular approach in adapting diffusion models to speech enhancement consists in modelling a progressive transformation between the clean and noisy speech signals. However, one popular diffusion model framework previously laid in image generation literature did not account for such a transformation towards the system input, which prevents from relating the existing diffusion-based speech enhancement systems with the aforementioned diffusion model framework. To address this, we extend this framework to account for the progressive transformation between the clean and noisy speech signals. This allows us to apply recent developments from image generation literature, and to systematically investigate design aspects of diffusion models that remain largely unexplored for speech enhancement, such as the neural network preconditioning, the training loss weighting, the stochastic differential equation (SDE), or the amount of stochasticity injected in the reverse process. We show that the performance of previous diffusion-based speech enhancement systems cannot be attributed to the progressive transformation between the clean and noisy speech signals. Moreover, we show that a proper choice of preconditioning, training loss weighting, SDE and sampler allows to outperform a popular diffusion-based speech enhancement system in terms of perceptual metrics while using fewer sampling steps, thus reducing the computational cost by a factor of four.