Tan, Ying
Exploring Interference between Concurrent Skin Stretches
Cheng, Ching Hei, Eden, Jonathan, Oetomo, Denny, Tan, Ying
--Proprioception is essential for coordinating human movements and enhancing the performance of assistive robotic devices. Skin stretch feedback, which closely aligns with natural proprioception mechanisms, presents a promising method for conveying proprioceptive information. T o better understand the impact of interference on skin stretch perception, we conducted a user study with 30 participants that evaluated the effect of two simultaneous skin stretches on user perception. We observed that when participants experience simultaneous skin stretch stimuli, a masking effect occurs which deteriorates perception performance in the collocated skin stretch configurations. However, the perceived workload stays the same. These findings show that interference can affect the perception of skin stretch such that multi-channel skin stretch feedback designs should avoid locating modules in close proximity. I. INTRODUCTION Proprioception, the sense of limb position relative to the body [1], is crucial for coordinating human movements.
Hierarchical Information-Guided Spatio-Temporal Mamba for Stock Time Series Forecasting
Yan, Wenbo, Wang, Shurui, Tan, Ying
Mamba has demonstrated excellent performance in various time series forecasting tasks due to its superior selection mechanism. Nevertheless, conventional Mamba-based models encounter significant challenges in accurately predicting stock time series, as they fail to adequately capture both the overarching market dynamics and the intricate interdependencies among individual stocks. To overcome these constraints, we introduce the Hierarchical Information-Guided Spatio-Temporal Mamba (HIGSTM) framework. HIGSTM introduces Index-Guided Frequency Filtering Decomposition to extract commonality and specificity from time series. The model architecture features a meticulously designed hierarchical framework that systematically captures both temporal dynamic patterns and global static relationships within the stock market. Furthermore, we propose an Information-Guided Mamba that integrates macro informations into the sequence selection process, thereby facilitating more market-conscious decision-making. Comprehensive experimental evaluations conducted on the CSI500, CSI800 and CSI1000 datasets demonstrate that HIGSTM achieves state-of-the-art performance.
Double-Path Adaptive-correlation Spatial-Temporal Inverted Transformer for Stock Time Series Forecasting
Yan, Wenbo, Tan, Ying
Spatial-temporal graph neural networks (STGNNs) have achieved significant success in various time series forecasting tasks. However, due to the lack of explicit and fixed spatial relationships in stock prediction tasks, many STGNNs fail to perform effectively in this domain. While some STGNNs learn spatial relationships from time series, they often lack comprehensiveness. Research indicates that modeling time series using feature changes as tokens reveals entirely different information compared to using time steps as tokens. To more comprehensively extract dynamic spatial information from stock data, we propose a Double-Path Adaptive-correlation Spatial-Temporal Inverted Transformer (DPA-STIFormer). DPA-STIFormer models each node via continuous changes in features as tokens and introduces a Double Direction Self-adaptation Fusion mechanism. This mechanism decomposes node encoding into temporal and feature representations, simultaneously extracting different spatial correlations from a double path approach, and proposes a Double-path gating mechanism to fuse these two types of correlation information. Experiments conducted on four stock market datasets demonstrate state-of-the-art results, validating the model's superior capability in uncovering latent temporal-correlation patterns.
Derivative-Free Optimization for Low-Rank Adaptation in Large Language Models
Jin, Feihu, Liu, Yin, Tan, Ying
Parameter-efficient tuning methods such as LoRA could achieve comparable performance to model tuning by tuning a small portion of the parameters. However, substantial computational resources are still required, as this process involves calculating gradients and performing back-propagation throughout the model. Much effort has recently been devoted to utilizing the derivative-free optimization method to eschew the computation of gradients and showcase an augmented level of robustness in few-shot settings. In this paper, we prepend the low-rank modules into each self-attention layer of the model and employ two derivative-free optimization methods to optimize these low-rank modules at each layer alternately. Extensive results on various tasks and language models demonstrate that our proposed method achieves substantial improvement and exhibits clear advantages in memory usage and convergence speed compared to existing gradient-based parameter-efficient tuning and derivative-free optimization methods in few-shot settings.
Zero-Shot Chain-of-Thought Reasoning Guided by Evolutionary Algorithms in Large Language Models
Jin, Feihu, Liu, Yifan, Tan, Ying
Large Language Models (LLMs) have demonstrated remarkable performance across diverse tasks and exhibited impressive reasoning abilities by applying zero-shot Chain-of-Thought (CoT) prompting. However, due to the evolving nature of sentence prefixes during the pre-training phase, existing zero-shot CoT prompting methods that employ identical CoT prompting across all task instances may not be optimal. In this paper, we introduce a novel zero-shot prompting method that leverages evolutionary algorithms to generate diverse promptings for LLMs dynamically. Our approach involves initializing two CoT promptings, performing evolutionary operations based on LLMs to create a varied set, and utilizing the LLMs to select a suitable CoT prompting for a given problem. Additionally, a rewriting operation, guided by the selected CoT prompting, enhances the understanding of the LLMs about the problem. Extensive experiments conducted across ten reasoning datasets demonstrate the superior performance of our proposed method compared to current zero-shot CoT prompting methods on GPT-3.5-turbo and GPT-4. Moreover, in-depth analytical experiments underscore the adaptability and effectiveness of our method in various reasoning tasks.
Data-Driven Goal Recognition in Transhumeral Prostheses Using Process Mining Techniques
Su, Zihang, Yu, Tianshi, Lipovetzky, Nir, Mohammadi, Alireza, Oetomo, Denny, Polyvyanyy, Artem, Sardina, Sebastian, Tan, Ying, van Beest, Nick
A transhumeral prosthesis restores missing anatomical segments below the shoulder, including the hand. Active prostheses utilize real-valued, continuous sensor data to recognize patient target poses, or goals, and proactively move the artificial limb. Previous studies have examined how well the data collected in stationary poses, without considering the time steps, can help discriminate the goals. In this case study paper, we focus on using time series data from surface electromyography electrodes and kinematic sensors to sequentially recognize patients' goals. Our approach involves transforming the data into discrete events and training an existing process mining-based goal recognition system. Results from data collected in a virtual reality setting with ten subjects demonstrate the effectiveness of our proposed goal recognition approach, which achieves significantly better precision and recall than the state-of-the-art machine learning techniques and is less confident when wrong, which is beneficial when approximating smoother movements of prostheses.
Temporal Dynamic Synchronous Functional Brain Network for Schizophrenia Diagnosis and Lateralization Analysis
Zhu, Cheng, Tan, Ying, Yang, Shuqi, Miao, Jiaqing, Zhu, Jiayi, Huang, Huan, Yao, Dezhong, Luo, Cheng
The available evidence suggests that dynamic functional connectivity (dFC) can capture time-varying abnormalities in brain activity in resting-state cerebral functional magnetic resonance imaging (rs-fMRI) data and has a natural advantage in uncovering mechanisms of abnormal brain activity in schizophrenia(SZ) patients. Hence, an advanced dynamic brain network analysis model called the temporal brain category graph convolutional network (Temporal-BCGCN) was employed. Firstly, a unique dynamic brain network analysis module, DSF-BrainNet, was designed to construct dynamic synchronization features. Subsequently, a revolutionary graph convolution method, TemporalConv, was proposed, based on the synchronous temporal properties of feature. Finally, the first modular abnormal hemispherical lateralization test tool in deep learning based on rs-fMRI data, named CategoryPool, was proposed. This study was validated on COBRE and UCLA datasets and achieved 83.62% and 89.71% average accuracies, respectively, outperforming the baseline model and other state-of-the-art methods. The ablation results also demonstrate the advantages of TemporalConv over the traditional edge feature graph convolution approach and the improvement of CategoryPool over the classical graph pooling approach. Interestingly, this study showed that the lower order perceptual system and higher order network regions in the left hemisphere are more severely dysfunctional than in the right hemisphere in SZ and reaffirms the importance of the left medial superior frontal gyrus in SZ. Our core code is available at: https://github.com/swfen/Temporal-BCGCN.
Black-Box Attacks against RNN Based Malware Detection Algorithms
Hu, Weiwei (Peking University) | Tan, Ying (Peking University)
Recent researches have shown that machine learning based malware detection algorithms are very vulnerable under the attacks of adversarial examples. These works mainly focused on the detection algorithms which use features with fixed dimension, while some researchers have begun to use recurrent neural networks (RNN) to detect malware based on sequential API features. This paper proposes a novel algorithm to generate sequential adversarial examples, which are used to attack a RNN based malware detection system. It is usually hard for malicious attackers to know the exact structures and weights of the victim RNN. A substitute RNN is trained to approximate the victim RNN. Then we propose a generative RNN to output sequential adversarial examples from the original sequential malware inputs. Experimental results showed that RNN based malware detection algorithms fail to detect most of the generated malicious adversarial examples, which means the proposed model is able to effectively bypass the detection algorithms.
Variational Autoencoder for Semi-Supervised Text Classification
Xu, Weidi (Peking University) | Sun, Haoze (Peking University) | Deng, Chao (Peking University) | Tan, Ying (Peking University)
Although semi-supervised variational autoencoder (SemiVAE) works in image classification task, it fails in text classification task if using vanilla LSTM as its decoder. From a perspective of reinforcement learning, it is verified that the decoder's capability to distinguish between different categorical labels is essential. Therefore, Semi-supervised Sequential Variational Autoencoder (SSVAE) is proposed, which increases the capability by feeding label into its decoder RNN at each time-step. Two specific decoder structures are investigated and both of them are verified to be effective. Besides, in order to reduce the computational complexity in training, a novel optimization method is proposed, which estimates the gradient of the unlabeled objective function by sampling, along with two variance reduction techniques. Experimental results on Large Movie Review Dataset (IMDB) and AG's News corpus show that the proposed approach significantly improves the classification accuracy compared with pure-supervised classifiers, and achieves competitive performance against previous advanced methods. State-of-the-art results can be obtained by integrating other pretraining-based methods.