Tan, Yi Chern
LLMs can implicitly learn from mistakes in-context
Alazraki, Lisa, Mozes, Maximilian, Campos, Jon Ander, Tan, Yi Chern, Rei, Marek, Bartolo, Max
Learning from mistakes is a fundamental feature of human intelligence. Previous work has shown that Large Language Models (LLMs) can also learn from incorrect answers when provided with a comprehensive rationale detailing why an answer is wrong or how to correct it. In this work, we examine whether LLMs can learn from mistakes in mathematical reasoning tasks when these explanations are not provided. We investigate if LLMs are able to implicitly infer such rationales simply from observing both incorrect and correct answers. Surprisingly, we find that LLMs perform better, on average, when rationales are eliminated from the context and incorrect answers are simply shown alongside correct ones. This approach also substantially outperforms chain-of-thought prompting in our evaluations. We show that these results are consistent across LLMs of different sizes and varying reasoning abilities. Further, we carry out an in-depth analysis, and show that prompting with both wrong and correct answers leads to greater performance and better generalisation than introducing additional, more diverse question-answer pairs into the context. Finally, we show that new rationales generated by models that have only observed incorrect and correct answers are scored equally as highly by humans as those produced with the aid of exemplar rationales. Our results demonstrate that LLMs are indeed capable of in-context implicit learning.
Aya 23: Open Weight Releases to Further Multilingual Progress
Aryabumi, Viraat, Dang, John, Talupuru, Dwarak, Dash, Saurabh, Cairuz, David, Lin, Hangyu, Venkitesh, Bharat, Smith, Madeline, Campos, Jon Ander, Tan, Yi Chern, Marchisio, Kelly, Bartolo, Max, Ruder, Sebastian, Locatelli, Acyr, Kreutzer, Julia, Frosst, Nick, Gomez, Aidan, Blunsom, Phil, Fadaee, Marzieh, รstรผn, Ahmet, Hooker, Sara
This technical report introduces Aya 23, a family of multilingual language models. Aya 23 builds on the recent release of the Aya model (\"Ust\"un et al., 2024), focusing on pairing a highly performant pre-trained model with the recently released Aya collection (Singh et al., 2024). The result is a powerful multilingual large language model serving 23 languages, expanding state-of-art language modeling capabilities to approximately half of the world's population. The Aya model covered 101 languages whereas Aya 23 is an experiment in depth vs breadth, exploring the impact of allocating more capacity to fewer languages that are included during pre-training. Aya 23 outperforms both previous massively multilingual models like Aya 101 for the languages it covers, as well as widely used models like Gemma, Mistral and Mixtral on an extensive range of discriminative and generative tasks. We release the open weights for both the 8B and 35B models as part of our continued commitment for expanding access to multilingual progress.
GraPPa: Grammar-Augmented Pre-Training for Table Semantic Parsing
Yu, Tao, Wu, Chien-Sheng, Lin, Xi Victoria, Wang, Bailin, Tan, Yi Chern, Yang, Xinyi, Radev, Dragomir, Socher, Richard, Xiong, Caiming
We present GraPPa, an effective pre-training approach for table semantic parsing that learns a compositional inductive bias in the joint representations of textual and tabular data. We construct synthetic question-SQL pairs over high-quality tables via a synchronous context-free grammar (SCFG) induced from existing text-to-SQL datasets. We pre-train our model on the synthetic data using a novel text-schema linking objective that predicts the syntactic role of a table field in the SQL for each question-SQL pair. To maintain the model's ability to represent real-world data, we also include masked language modeling (MLM) over several existing table-and-language datasets to regularize the pre-training process. On four popular fully supervised and weakly supervised table semantic parsing benchmarks, GraPPa significantly outperforms RoBERTa-large as the feature representation layers and establishes new state-of-the-art results on all of them.
CoSQL: A Conversational Text-to-SQL Challenge Towards Cross-Domain Natural Language Interfaces to Databases
Yu, Tao, Zhang, Rui, Er, He Yang, Li, Suyi, Xue, Eric, Pang, Bo, Lin, Xi Victoria, Tan, Yi Chern, Shi, Tianze, Li, Zihan, Jiang, Youxuan, Yasunaga, Michihiro, Shim, Sungrok, Chen, Tao, Fabbri, Alexander, Li, Zifan, Chen, Luyao, Zhang, Yuwen, Dixit, Shreya, Zhang, Vincent, Xiong, Caiming, Socher, Richard, Lasecki, Walter S, Radev, Dragomir
It consists of 30k turns plus 10k annotated SQL queries, obtained from a Wizard-of-Oz (WOZ) collection of 3k dialogues querying 200 complex DBs spanning 138 domains. Each dialogue simulates a real-world DB query scenario with a crowd worker as a user exploring the DB and a SQL expert retrieving answers with SQL, clarifying ambiguous questions, or otherwise informing of unanswerable questions. When user questions are answerable by SQL, the expert describes the SQL and execution results to the user, hence maintaining a natural interaction flow. CoSQL introduces new challenges compared to existing task-oriented dialogue datasets: (1) the dialogue states are grounded in SQL, a domain-independent executable representation, instead of domain-specific slot-value pairs, and (2) because testing is done on unseen databases, success requires generalizing to new domains. CoSQL includes three tasks: SQL-grounded dialogue state tracking, response generation from query results, and user dialogue act prediction. We evaluate a set of strong baselines for each task and show that CoSQL presents significant challenges for future research. The dataset, baselines, and leaderboard will be released at https:// yale-lily.github.io/cosql .
SParC: Cross-Domain Semantic Parsing in Context
Yu, Tao, Zhang, Rui, Yasunaga, Michihiro, Tan, Yi Chern, Lin, Xi Victoria, Li, Suyi, Er, Heyang, Li, Irene, Pang, Bo, Chen, Tao, Ji, Emily, Dixit, Shreya, Proctor, David, Shim, Sungrok, Kraft, Jonathan, Zhang, Vincent, Xiong, Caiming, Socher, Richard, Radev, Dragomir
We present SParC, a dataset for cross-domainSemanticParsing inContext that consists of 4,298 coherent question sequences (12k+ individual questions annotated with SQL queries). It is obtained from controlled user interactions with 200 complex databases over 138 domains. We provide an in-depth analysis of SParC and show that it introduces new challenges compared to existing datasets. SParC demonstrates complex contextual dependencies, (2) has greater semantic diversity, and (3) requires generalization to unseen domains due to its cross-domain nature and the unseen databases at test time. We experiment with two state-of-the-art text-to-SQL models adapted to the context-dependent, cross-domain setup. The best model obtains an exact match accuracy of 20.2% over all questions and less than10% over all interaction sequences, indicating that the cross-domain setting and the con-textual phenomena of the dataset present significant challenges for future research. The dataset, baselines, and leaderboard are released at https://yale-lily.github.io/sparc.