Goto

Collaborating Authors

 Tan, Weicong


OntoMedRec: Logically-Pretrained Model-Agnostic Ontology Encoders for Medication Recommendation

arXiv.org Artificial Intelligence

Most existing medication recommendation models learn representations for medical concepts based on electronic health records (EHRs) and make recommendations with learnt representations. However, most medications appear in the dataset for limited times, resulting in insufficient learning of their representations. Medical ontologies are the hierarchical classification systems for medical terms where similar terms are in the same class on a certain level. In this paper, we propose OntoMedRec, the logically-pretrained and model-agnostic medical Ontology Encoders for Medication Recommendation that addresses data sparsity problem with medical ontologies. We conduct comprehensive experiments on benchmark datasets to evaluate the effectiveness of OntoMedRec, and the result shows the integration of OntoMedRec improves the performance of various models in both the entire EHR datasets and the admissions with few-shot medications. We provide the GitHub repository for the source code on https://anonymous.4open.science/r/OntoMedRec-D123


HiTSKT: A Hierarchical Transformer Model for Session-Aware Knowledge Tracing

arXiv.org Artificial Intelligence

Knowledge tracing (KT) aims to leverage students' learning histories to estimate their mastery levels on a set of pre-defined skills, based on which the corresponding future performance can be accurately predicted. As an important way of providing personalized experience for online education, KT has gained increased attention in recent years. In practice, a student's learning history comprises answers to sets of massed questions, each known as a session, rather than merely being a sequence of independent answers. Theoretically, within and across these sessions, students' learning dynamics can be very different. Therefore, how to effectively model the dynamics of students' knowledge states within and across the sessions is crucial for handling the KT problem. Most existing KT models treat student's learning records as a single continuing sequence, without capturing the sessional shift of students' knowledge state. To address the above issue, we propose a novel hierarchical transformer model, named HiTSKT, comprises an interaction(-level) encoder to capture the knowledge a student acquires within a session, and a session(-level) encoder to summarise acquired knowledge across the past sessions. To predict an interaction in the current session, a knowledge retriever integrates the summarised past-session knowledge with the previous interactions' information into proper knowledge representations. These representations are then used to compute the student's current knowledge state. Additionally, to model the student's long-term forgetting behaviour across the sessions, a power-law-decay attention mechanism is designed and deployed in the session encoder, allowing it to emphasize more on the recent sessions. Extensive experiments on three public datasets demonstrate that HiTSKT achieves new state-of-the-art performance on all the datasets compared with six state-of-the-art KT models.