Tan, Tieniu
VidCapBench: A Comprehensive Benchmark of Video Captioning for Controllable Text-to-Video Generation
Chen, Xinlong, Zhang, Yuanxing, Rao, Chongling, Guan, Yushuo, Liu, Jiaheng, Zhang, Fuzheng, Song, Chengru, Liu, Qiang, Zhang, Di, Tan, Tieniu
The training of controllable text-to-video (T2V) models relies heavily on the alignment between videos and captions, yet little existing research connects video caption evaluation with T2V generation assessment. This paper introduces VidCapBench, a video caption evaluation scheme specifically designed for T2V generation, agnostic to any particular caption format. VidCapBench employs a data annotation pipeline, combining expert model labeling and human refinement, to associate each collected video with key information spanning video aesthetics, content, motion, and physical laws. VidCapBench then partitions these key information attributes into automatically assessable and manually assessable subsets, catering to both the rapid evaluation needs of agile development and the accuracy requirements of thorough validation. By evaluating numerous state-of-the-art captioning models, we demonstrate the superior stability and comprehensiveness of VidCapBench compared to existing video captioning evaluation approaches. Verification with off-the-shelf T2V models reveals a significant positive correlation between scores on VidCapBench and the T2V quality evaluation metrics, indicating that VidCapBench can provide valuable guidance for training T2V models. The project is available at https://github.com/VidCapBench/VidCapBench.
MM-RLHF: The Next Step Forward in Multimodal LLM Alignment
Zhang, Yi-Fan, Yu, Tao, Tian, Haochen, Fu, Chaoyou, Li, Peiyan, Zeng, Jianshu, Xie, Wulin, Shi, Yang, Zhang, Huanyu, Wu, Junkang, Wang, Xue, Hu, Yibo, Wen, Bin, Yang, Fan, Zhang, Zhang, Gao, Tingting, Zhang, Di, Wang, Liang, Jin, Rong, Tan, Tieniu
Despite notable advancements in Multimodal Large Language Models (MLLMs), most state-of-the-art models have not undergone thorough alignment with human preferences. This gap exists because current alignment research has primarily achieved progress in specific areas (e.g., hallucination reduction), while the broader question of whether aligning models with human preferences can systematically enhance MLLM capability remains largely unexplored. To this end, we introduce MM-RLHF, a dataset containing $\mathbf{120k}$ fine-grained, human-annotated preference comparison pairs. This dataset represents a substantial advancement over existing resources, offering superior size, diversity, annotation granularity, and quality. Leveraging this dataset, we propose several key innovations to improve both the quality of reward models and the efficiency of alignment algorithms. Notably, we introduce a Critique-Based Reward Model, which generates critiques of model outputs before assigning scores, offering enhanced interpretability and more informative feedback compared to traditional scalar reward mechanisms. Additionally, we propose Dynamic Reward Scaling, a method that adjusts the loss weight of each sample according to the reward signal, thereby optimizing the use of high-quality comparison pairs. Our approach is rigorously evaluated across $\mathbf{10}$ distinct dimensions and $\mathbf{27}$ benchmarks, with results demonstrating significant and consistent improvements in model performance. Specifically, fine-tuning LLaVA-ov-7B with MM-RLHF and our alignment algorithm leads to a $\mathbf{19.5}$% increase in conversational abilities and a $\mathbf{60}$% improvement in safety. We have open-sourced the preference dataset, reward model, training and evaluation code, as well as reward modeling and safety benchmarks. For more details, please visit our project page: https://mm-rlhf.github.io.
Towards Compatible Fine-tuning for Vision-Language Model Updates
Wang, Zhengbo, Liang, Jian, Sheng, Lijun, He, Ran, Wang, Zilei, Tan, Tieniu
So far, efficient fine-tuning has become a popular strategy for enhancing the capabilities of foundation models on downstream tasks by learning plug-and-play modules. However, existing methods overlook a crucial issue: if the underlying foundation model is updated, are these plug-and-play modules still effective? In this paper, we first conduct a detailed analysis of various fine-tuning methods on the CLIP in terms of their compatibility with model updates. The study reveals that many high-performing fine-tuning methods fail to be compatible with the upgraded models. To address this, we propose a novel approach, Class-conditioned Context Optimization (ContCoOp), which integrates learnable prompts with class embeddings using an attention layer before inputting them into the text encoder. Consequently, the prompts can dynamically adapt to the changes in embedding space (due to model updates), ensuring continued effectiveness. Extensive experiments over 15 datasets show that our ContCoOp achieves the highest compatibility over the baseline methods, and exhibits robust out-of-distribution generalization.
TimeRAF: Retrieval-Augmented Foundation model for Zero-shot Time Series Forecasting
Zhang, Huanyu, Xu, Chang, Zhang, Yi-Fan, Zhang, Zhang, Wang, Liang, Bian, Jiang, Tan, Tieniu
Time series forecasting plays a crucial role in data mining, driving rapid advancements across numerous industries. With the emergence of large models, time series foundation models (TSFMs) have exhibited remarkable generalization capabilities, such as zero-shot learning, through large-scale pre-training. Meanwhile, Retrieval-Augmented Generation (RAG) methods have been widely employed to enhance the performance of foundation models on unseen data, allowing models to access to external knowledge. In this paper, we introduce TimeRAF, a Retrieval-Augmented Forecasting model that enhance zero-shot time series forecasting through retrieval-augmented techniques. We develop customized time series knowledge bases that are tailored to the specific forecasting tasks. TimeRAF employs an end-to-end learnable retriever to extract valuable information from the knowledge base. Additionally, we propose Channel Prompting for knowledge integration, which effectively extracts relevant information from the retrieved knowledge along the channel dimension. Extensive experiments demonstrate the effectiveness of our model, showing significant improvement across various domains and datasets.
VLKEB: A Large Vision-Language Model Knowledge Editing Benchmark
Huang, Han, Zhong, Haitian, Yu, Tao, Liu, Qiang, Wu, Shu, Wang, Liang, Tan, Tieniu
Recently, knowledge editing on large language models (LLMs) has received considerable attention. Compared to this, editing Large Vision-Language Models (LVLMs) faces extra challenges from diverse data modalities and complicated model components, and data for LVLMs editing are limited. The existing LVLM editing benchmark, which comprises three metrics (Reliability, Locality, and Generality), falls short in the quality of synthesized evaluation images and cannot assess whether models apply edited knowledge in relevant content. Therefore, we employ more reliable data collection methods to construct a new Large $\textbf{V}$ision-$\textbf{L}$anguage Model $\textbf{K}$nowledge $\textbf{E}$diting $\textbf{B}$enchmark, $\textbf{VLKEB}$, and extend the Portability metric for more comprehensive evaluation. Leveraging a multi-modal knowledge graph, our image data are bound with knowledge entities. This can be further used to extract entity-related knowledge, which constitutes the base of editing data. We conduct experiments of different editing methods on five LVLMs, and thoroughly analyze how do they impact the models. The results reveal strengths and deficiencies of these methods and hopefully provide insights for future research. The codes and dataset are available at: $\href{https://github.com/VLKEB/VLKEB}{\text{https://github.com/VLKEB/VLKEB}}$.
Connecting the Dots: Collaborative Fine-tuning for Black-Box Vision-Language Models
Wang, Zhengbo, Liang, Jian, He, Ran, Wang, Zilei, Tan, Tieniu
With the emergence of pretrained vision-language models (VLMs), considerable efforts have been devoted to fine-tuning them for downstream tasks. Despite the progress made in designing efficient fine-tuning methods, such methods require access to the model's parameters, which can be challenging as model owners often opt to provide their models as a black box to safeguard model ownership. This paper proposes a \textbf{C}ollabo\textbf{ra}tive \textbf{F}ine-\textbf{T}uning (\textbf{CraFT}) approach for fine-tuning black-box VLMs to downstream tasks, where one only has access to the input prompts and the output predictions of the model. CraFT comprises two modules, a prompt generation module for learning text prompts and a prediction refinement module for enhancing output predictions in residual style. Additionally, we introduce an auxiliary prediction-consistent loss to promote consistent optimization across these modules. These modules are optimized by a novel collaborative training algorithm. Extensive experiments on few-shot classification over 15 datasets demonstrate the superiority of CraFT. The results show that CraFT achieves a decent gain of about 12\% with 16-shot datasets and only 8,000 queries. Moreover, CraFT trains faster and uses only about 1/80 of the memory footprint for deployment, while sacrificing only 1.62\% compared to the white-box method.
A Hard-to-Beat Baseline for Training-free CLIP-based Adaptation
Wang, Zhengbo, Liang, Jian, Sheng, Lijun, He, Ran, Wang, Zilei, Tan, Tieniu
Contrastive Language-Image Pretraining (CLIP) has gained popularity for its remarkable zero-shot capacity. Recent research has focused on developing efficient fine-tuning methods, such as prompt learning and adapter, to enhance CLIP's performance in downstream tasks. However, these methods still require additional training time and computational resources, which is undesirable for devices with limited resources. In this paper, we revisit a classical algorithm, Gaussian Discriminant Analysis (GDA), and apply it to the downstream classification of CLIP. Typically, GDA assumes that features of each class follow Gaussian distributions with identical covariance. By leveraging Bayes' formula, the classifier can be expressed in terms of the class means and covariance, which can be estimated from the data without the need for training. To integrate knowledge from both visual and textual modalities, we ensemble it with the original zero-shot classifier within CLIP. Extensive results on 17 datasets validate that our method surpasses or achieves comparable results with state-of-the-art methods on few-shot classification, imbalanced learning, and out-of-distribution generalization. In addition, we extend our method to base-to-new generalization and unsupervised learning, once again demonstrating its superiority over competing approaches. Our code is publicly available at \url{https://github.com/mrflogs/ICLR24}.
Not all Minorities are Equal: Empty-Class-Aware Distillation for Heterogeneous Federated Learning
Guo, Kuangpu, Ding, Yuhe, Liang, Jian, He, Ran, Wang, Zilei, Tan, Tieniu
Data heterogeneity, characterized by disparities in local data distribution across clients, poses a significant challenge in federated learning. Substantial efforts have been devoted to addressing the heterogeneity in local label distribution. As minority classes suffer from worse accuracy due to overfitting on local imbalanced data, prior methods often incorporate class-balanced learning techniques during local training. Despite the improved mean accuracy across all classes, we observe that empty classes-referring to categories absent from a client's data distribution-are still not well recognized. This paper introduces FedED, a novel approach in heterogeneous federated learning that integrates both empty-class distillation and logit suppression simultaneously. Specifically, empty-class distillation leverages knowledge distillation during local training on each client to retain essential information related to empty classes from the global model. Moreover, logit suppression directly penalizes network logits for non-label classes, effectively addressing misclassifications in minority classes that may be biased toward majority classes. Extensive experiments validate the efficacy of FedED, surpassing previous state-of-the-art methods across diverse datasets with varying degrees of label distribution shift.
Assaying on the Robustness of Zero-Shot Machine-Generated Text Detectors
Zhang, Yi-Fan, Zhang, Zhang, Wang, Liang, Tan, Tieniu, Jin, Rong
To combat the potential misuse of Natural Language Generation (NLG) technology, a variety of algorithms have been developed for the detection of AI-generated texts. Traditionally, this task is treated as a binary classification problem. Although supervised learning has demonstrated promising results, acquiring labeled data for detection purposes poses real-world challenges and the risk of overfitting. In an effort to address these issues, we delve into the realm of zero-shot machine-generated text detection. Existing zero-shot detectors, typically designed for specific tasks or topics, often assume uniform testing scenarios, limiting their practicality. In our research, we explore various advanced Large Language Models (LLMs) and their specialized variants, contributing to this field in several ways. In empirical studies, we uncover a significant correlation between topics and detection performance. Secondly, we delve into the influence of topic shifts on zero-shot detectors. These investigations shed light on the adaptability and robustness of these detection methods across diverse topics. The code is available at \url{https://github.com/yfzhang114/robustness-detection}.
AdaptGuard: Defending Against Universal Attacks for Model Adaptation
Sheng, Lijun, Liang, Jian, He, Ran, Wang, Zilei, Tan, Tieniu
Model adaptation aims at solving the domain transfer problem under the constraint of only accessing the pretrained source models. With the increasing considerations of data privacy and transmission efficiency, this paradigm has been gaining recent popularity. This paper studies the vulnerability to universal attacks transferred from the source domain during model adaptation algorithms due to the existence of malicious providers. We explore both universal adversarial perturbations and backdoor attacks as loopholes on the source side and discover that they still survive in the target models after adaptation. To address this issue, we propose a model preprocessing framework, named AdaptGuard, to improve the security of model adaptation algorithms. AdaptGuard avoids direct use of the risky source parameters through knowledge distillation and utilizes the pseudo adversarial samples under adjusted radius to enhance the robustness. AdaptGuard is a plug-and-play module that requires neither robust pretrained models nor any changes for the following model adaptation algorithms. Extensive results on three commonly used datasets and two popular adaptation methods validate that AdaptGuard can effectively defend against universal attacks and maintain clean accuracy in the target domain simultaneously. We hope this research will shed light on the safety and robustness of transfer learning. Code is available at https://github.com/TomSheng21/AdaptGuard.