Tamosiunaite, Minija
Simulated Mental Imagery for Robotic Task Planning
Li, Shijia, Kulvicius, Tomas, Tamosiunaite, Minija, Wörgötter, Florentin
Traditional AI-planning methods for task planning in robotics require a symbolically encoded domain description. While powerful in well-defined scenarios, as well as human-interpretable, setting this up requires substantial effort. Different from this, most everyday planning tasks are solved by humans intuitively, using mental imagery of the different planning steps. Here we suggest that the same approach can be used for robots, too, in cases which require only limited execution accuracy. In the current study, we propose a novel sub-symbolic method called Simulated Mental Imagery for Planning (SiMIP), which consists of perception, simulated action, success-checking and re-planning performed on 'imagined' images. We show that it is possible to implement mental imagery-based planning in an algorithmically sound way by combining regular convolutional neural networks and generative adversarial networks. With this method, the robot acquires the capability to use the initially existing scene to generate action plans without symbolic domain descriptions, while at the same time plans remain human-interpretable, different from deep reinforcement learning, which is an alternative sub-symbolic approach. We create a dataset from real scenes for a packing problem of having to correctly place different objects into different target slots. This way efficiency and success rate of this algorithm could be quantified.
Combining optimal path search with task-dependent learning in a neural network
Kulvicius, Tomas, Tamosiunaite, Minija, Wörgötter, Florentin
Finding optimal paths in connected graphs requires determining the smallest total cost for traveling along the graph's edges. This problem can be solved by several classical algorithms where, usually, costs are predefined for all edges. Conventional planning methods can, thus, normally not be used when wanting to change costs in an adaptive way following the requirements of some task. Here we show that one can define a neural network representation of path finding problems by transforming cost values into synaptic weights, which allows for online weight adaptation using network learning mechanisms. When starting with an initial activity value of one, activity propagation in this network will lead to solutions, which are identical to those found by the Bellman Ford algorithm. The neural network has the same algorithmic complexity as Bellman Ford and, in addition, we can show that network learning mechanisms (such as Hebbian learning) can adapt the weights in the network augmenting the resulting paths according to some task at hand. We demonstrate this by learning to navigate in an environment with obstacles as well as by learning to follow certain sequences of path nodes. Hence, the here-presented novel algorithm may open up a different regime of applications where path-augmentation (by learning) is directly coupled with path finding in a natural way.
Bootstrapping Concept Formation in Small Neural Networks
Tamosiunaite, Minija, Kulvicius, Tomas, Wörgötter, Florentin
The question how neural systems (of humans) can perform reasoning is still far from being solved. We posit that the process of forming Concepts is a fundamental step required for this. We argue that, first, Concepts are formed as closed representations, which are then consolidated by relating them to each other. Here we present a model system (agent) with a small neural network that uses realistic learning rules and receives only feedback from the environment in which the agent performs virtual actions. First, the actions of the agent are reflexive. In the process of learning, statistical regularities in the input lead to the formation of neuronal pools representing relations between the entities observed by the agent from its artificial world. This information then influences the behavior of the agent via feedback connections replacing the initial reflex by an action driven by these relational representations. We hypothesize that the neuronal pools representing relational information can be considered as primordial Concepts, which may in a similar way be present in some pre-linguistic animals, too. We argue that systems such as this can help formalizing the discussion about what constitutes Concepts and serve as a starting point for constructing artificial cogitating systems.
Action Prediction in Humans and Robots
Wörgötter, Florentin, Ziaeetabar, Fatemeh, Pfeiffer, Stefan, Kaya, Osman, Kulvicius, Tomas, Tamosiunaite, Minija
Efficient action prediction is of central importance for the fluent workflow between humans and equally so for human-robot interaction. To achieve prediction, actions can be encoded by a series of events, where every event corresponds to a change in a (static or dynamic) relation between some of the objects in a scene. Manipulation actions and others can be uniquely encoded this way and only, on average, less than 60% of the time series has to pass until an action can be predicted. Using a virtual reality setup and testing ten different manipulation actions, here we show that in most cases humans predict actions at the same event as the algorithm. In addition, we perform an in-depth analysis about the temporal gain resulting from such predictions when chaining actions and show in some robotic experiments that the percentage gain for humans and robots is approximately equal. Thus, if robots use this algorithm then their prediction-moments will be compatible to those of their human interaction partners, which should much benefit natural human-robot collaboration.
On the asymptotic equivalence between differential Hebbian and temporal difference learning using a local third factor
Kolodziejski, Christoph, Porr, Bernd, Tamosiunaite, Minija, Wörgötter, Florentin
In this theoretical contribution we provide mathematical proof that two of the most important classes of network learning - correlation-based differential Hebbian learningand reward-based temporal difference learning - are asymptotically equivalent when timing the learning with a local modulatory signal. This opens the opportunity to consistently reformulate most of the abstract reinforcement learning frameworkfrom a correlation based perspective that is more closely related to the biophysics of neurons.
Temporally changing synaptic plasticity
Tamosiunaite, Minija, Porr, Bernd, Wörgötter, Florentin
Recent experimental results suggest that dendritic and back-propagating spikes can influence synaptic plasticity in different ways [1]. In this study we investigate how these signals could temporally interact at dendrites leading to changing plasticity properties at local synapse clusters. Similar toa previous study [2], we employ a differential Hebbian plasticity rule to emulate spike-timing dependent plasticity. We use dendritic (D-) and back-propagating (BP-) spikes as post-synaptic signals in the learning ruleand investigate how their interaction will influence plasticity. We will analyze a situation where synapse plasticity characteristics change in the course of time, depending on the type of post-synaptic activity momentarily elicited.Starting with weak synapses, which only elicit local D-spikes, a slow, unspecific growth process is induced. As soon as the soma begins to spike this process is replaced by fast synaptic changes as the consequence of the much stronger and sharper BP-spike, which now dominates the plasticity rule. This way a winner-take-all-mechanism emerges in a two-stage process, enhancing the best-correlated inputs. These results suggest that synaptic plasticity is a temporal changing process bywhich the computational properties of dendrites or complete neurons canbe substantially augmented.