Tamang, Suzanne
Question-Answering System Extracts Information on Injection Drug Use from Clinical Notes
Mahbub, Maria, Goethert, Ian, Danciu, Ioana, Knight, Kathryn, Srinivasan, Sudarshan, Tamang, Suzanne, Rozenberg-Ben-Dror, Karine, Solares, Hugo, Martins, Susana, Trafton, Jodie, Begoli, Edmon, Peterson, Gregory
Background: Injection drug use (IDU) is a dangerous health behavior that increases mortality and morbidity. Identifying IDU early and initiating harm reduction interventions can benefit individuals at risk. However, extracting IDU behaviors from patients' electronic health records (EHR) is difficult because there is no International Classification of Disease (ICD) code and the only place IDU information can be indicated is unstructured free-text clinical notes. Although natural language processing can efficiently extract this information from unstructured data, there are no validated tools. Methods: To address this gap in clinical information, we design and demonstrate a question-answering (QA) framework to extract information on IDU from clinical notes. Our framework involves two main steps: (1) generating a gold-standard QA dataset and (2) developing and testing the QA model. We utilize 2323 clinical notes of 1145 patients sourced from the VA Corporate Data Warehouse to construct the gold-standard dataset for developing and evaluating the QA model. We also demonstrate the QA model's ability to extract IDU-related information on temporally out-of-distribution data. Results: Here we show that for a strict match between gold-standard and predicted answers, the QA model achieves 51.65% F1 score. For a relaxed match between the gold-standard and predicted answers, the QA model obtains 78.03% F1 score, along with 85.38% Precision and 79.02% Recall scores. Moreover, the QA model demonstrates consistent performance when subjected to temporally out-of-distribution data. Conclusions: Our study introduces a QA framework designed to extract IDU information from clinical notes, aiming to enhance the accurate and efficient detection of people who inject drugs, extract relevant information, and ultimately facilitate informed patient care.
Snomed2Vec: Random Walk and Poincar\'e Embeddings of a Clinical Knowledge Base for Healthcare Analytics
Agarwal, Khushbu, Eftimov, Tome, Addanki, Raghavendra, Choudhury, Sutanay, Tamang, Suzanne, Rallo, Robert
Representation learning methods that transform encoded data (e.g., diagnosis and drug codes) into continuous vector spaces (i.e., vector embeddings) are critical for the application of deep learning in healthcare. Initial work in this area explored the use of variants of the word2vec algorithm to learn embeddings for medical concepts from electronic health records or medical claims datasets. We propose learning embeddings for medical concepts by using graph-based representation learning methods on SNOMED-CT, a widely popular knowledge graph in the healthcare domain with numerous operational and research applications. Current work presents an empirical analysis of various embedding methods, including the evaluation of their performance on multiple tasks of biomedical relevance (node classification, link prediction, and patient state prediction). Our results show that concept embeddings derived from the SNOMED-CT knowledge graph significantly outperform state-of-the-art embeddings, showing 5-6x improvement in ``concept similarity" and 6-20\% improvement in patient diagnosis.
A Knowledge Graph-based Approach for Exploring the U.S. Opioid Epidemic
Kamdar, Maulik R., Hamamsy, Tymor, Shelton, Shea, Vala, Ayin, Eftimov, Tome, Zou, James, Tamang, Suzanne
The United States is in the midst of an opioid epidemic with recent estimates indicating that more than 130 people die every day due to drug overdose. The over-prescription and addiction to opioid painkillers, heroin, and synthetic opioids, has led to a public health crisis and created a huge social and economic burden. Statistical learning methods that use data from multiple clinical centers across the US to detect opioid over-prescribing trends and predict possible opioid misuse are required. However, the semantic heterogeneity in the representation of clinical data across different centers makes the development and evaluation of such methods difficult and non-trivial. We create the Opioid Drug Knowledge Graph (ODKG) -- a network of opioid-related drugs, active ingredients, formulations, combinations, and brand names. We use the ODKG to normalize drug strings in a clinical data warehouse consisting of patient data from over 400 healthcare facilities in 42 different states. We showcase the use of ODKG to generate summary statistics of opioid prescription trends across US regions. These methods and resources can aid the development of advanced and scalable models to monitor the opioid epidemic and to detect illicit opioid misuse behavior. Our work is relevant to policymakers and pain researchers who wish to systematically assess factors that contribute to opioid over-prescribing and iatrogenic opioid addiction in the US.
Unsupervised Modeling of Patient-Level Disease Dynamics
Tamang, Suzanne (City University of New York, The Graduate Center) | Parsons, Simon (City University of New York, Brooklyn College and The Graduate Center )
To provide insight into patient-level disease dynamics from data collected at irregular time intervals, this work extends applications of semi-parametric clustering for temporal mining. In the semi-parametric clustering framework, Markovian models provide useful parametric assumptions for modeling temporal dynamics, and a non-parametric method isused to cluster the temporal abstractions instead operating on the original data. Our contribution extends abstraction to continuous-time Markov models and the clustering componentto the non-parametric Bayesian setting, which does not require the number of clusters to be indicated a priori.