Taleb-Ahmed, Abdelmalik
MAAT: Mamba Adaptive Anomaly Transformer with association discrepancy for time series
Sellam, Abdellah Zakaria, Benaissa, Ilyes, Taleb-Ahmed, Abdelmalik, Patrono, Luigi, Distante, Cosimo
Anomaly detection in time series is essential for industrial monitoring and environmental sensing, yet distinguishing anomalies from complex patterns remains challenging. Existing methods like the Anomaly Transformer and DCdetector have progressed, but they face limitations such as sensitivity to short-term contexts and inefficiency in noisy, non-stationary environments. To overcome these issues, we introduce MAAT, an improved architecture that enhances association discrepancy modeling and reconstruction quality. MAAT features Sparse Attention, efficiently capturing long-range dependencies by focusing on relevant time steps, thereby reducing computational redundancy. Additionally, a Mamba-Selective State Space Model is incorporated into the reconstruction module, utilizing a skip connection and Gated Attention to improve anomaly localization and detection performance. Extensive experiments show that MAAT significantly outperforms previous methods, achieving better anomaly distinguishability and generalization across various time series applications, setting a new standard for unsupervised time series anomaly detection in real-world scenarios.
Boosting House Price Estimations with Multi-Head Gated Attention
Sellam, Zakaria Abdellah, Distante, Cosimo, Taleb-Ahmed, Abdelmalik, Mazzeo, Pier Luigi
Evaluating house prices is crucial for various stakeholders, including homeowners, investors, and policymakers. However, traditional spatial interpolation methods have limitations in capturing the complex spatial relationships that affect property values. To address these challenges, we have developed a new method called Multi-Head Gated Attention for spatial interpolation. Our approach builds upon attention-based interpolation models and incorporates multiple attention heads and gating mechanisms to capture spatial dependencies and contextual information better. Importantly, our model produces embeddings that reduce the dimensionality of the data, enabling simpler models like linear regression to outperform complex ensembling models. We conducted extensive experiments to compare our model with baseline methods and the original attention-based interpolation model. The results show a significant improvement in the accuracy of house price predictions, validating the effectiveness of our approach. This research advances the field of spatial interpolation and provides a robust tool for more precise house price evaluation. Our GitHub repository.contains the data and code for all datasets, which are available for researchers and practitioners interested in replicating or building upon our work.
Bi-LORA: A Vision-Language Approach for Synthetic Image Detection
Keita, Mamadou, Hamidouche, Wassim, Eutamene, Hessen Bougueffa, Hadid, Abdenour, Taleb-Ahmed, Abdelmalik
Advancements in deep image synthesis techniques, such as generative adversarial networks (GANs) and diffusion models (DMs), have ushered in an era of generating highly realistic images. While this technological progress has captured significant interest, it has also raised concerns about the potential difficulty in distinguishing real images from their synthetic counterparts. This paper takes inspiration from the potent convergence capabilities between vision and language, coupled with the zero-shot nature of vision-language models (VLMs). We introduce an innovative method called Bi-LORA that leverages VLMs, combined with low-rank adaptation (LORA) tuning techniques, to enhance the precision of synthetic image detection for unseen model-generated images. The pivotal conceptual shift in our methodology revolves around reframing binary classification as an image captioning task, leveraging the distinctive capabilities of cutting-edge VLM, notably bootstrapping language image pre-training (BLIP2). Rigorous and comprehensive experiments are conducted to validate the effectiveness of our proposed approach, particularly in detecting unseen diffusion-generated images from unknown diffusion-based generative models during training, showcasing robustness to noise, and demonstrating generalization capabilities to GANs. The obtained results showcase an impressive average accuracy of 93.41% in synthetic image detection on unseen generation models. The code and models associated with this research can be publicly accessed at https://github.com/Mamadou-Keita/VLM-DETECT.
Harnessing the Power of Large Vision Language Models for Synthetic Image Detection
Keita, Mamadou, Hamidouche, Wassim, Bougueffa, Hassen, Hadid, Abdenour, Taleb-Ahmed, Abdelmalik
In recent years, the emergence of models capable of generating images from text has attracted considerable interest, offering the possibility of creating realistic images from text descriptions. Yet these advances have also raised concerns about the potential misuse of these images, including the creation of misleading content such as fake news and propaganda. This study investigates the effectiveness of using advanced vision-language models (VLMs) for synthetic image identification. Specifically, the focus is on tuning state-of-the-art image captioning models for synthetic image detection. By harnessing the robust understanding capabilities of large VLMs, the aim is to distinguish authentic images from synthetic images produced by diffusion-based models. This study contributes to the advancement of synthetic image detection by exploiting the capabilities of visual language models such as BLIP-2 and ViTGPT2. By tailoring image captioning models, we address the challenges associated with the potential misuse of synthetic images in real-world applications. Results described in this paper highlight the promising role of VLMs in the field of synthetic image detection, outperforming conventional image-based detection techniques. Code and models can be found at https://github.com/Mamadou-Keita/VLM-DETECT.
Ensembling and Test Augmentation for Covid-19 Detection and Covid-19 Domain Adaptation from 3D CT-Scans
Bougourzi, Fares, Moula, Feryal Windal, Benhabiles, Halim, Dornaika, Fadi, Taleb-Ahmed, Abdelmalik
Since the emergence of Covid-19 in late 2019, medical image analysis using artificial intelligence (AI) has emerged as a crucial research area, particularly with the utility of CT-scan imaging for disease diagnosis. This paper contributes to the 4th COV19D competition, focusing on Covid-19 Detection and Covid-19 Domain Adaptation Challenges. Our approach centers on lung segmentation and Covid-19 infection segmentation employing the recent CNN-based segmentation architecture PDAtt-Unet, which simultaneously segments lung regions and infections. Departing from traditional methods, we concatenate the input slice (grayscale) with segmented lung and infection, generating three input channels akin to color channels. Additionally, we employ three 3D CNN backbones Customized Hybrid-DeCoVNet, along with pretrained 3D-Resnet-18 and 3D-Resnet-50 models to train Covid-19 recognition for both challenges. Furthermore, we explore ensemble approaches and testing augmentation to enhance performance. Comparison with baseline results underscores the substantial efficiency of our approach, with a significant margin in terms of F1-score (14 %). This study advances the field by presenting a comprehensive methodology for accurate Covid-19 detection and adaptation, leveraging cutting-edge AI techniques in medical image analysis.