Goto

Collaborating Authors

 Talamadupula, Kartik


Type-augmented Relation Prediction in Knowledge Graphs

arXiv.org Artificial Intelligence

Knowledge graphs (KGs) are of great importance to many real world applications, but they generally suffer from incomplete information in the form of missing relations between entities. Knowledge graph completion (also known as relation prediction) is the task of inferring missing facts given existing ones. Most of the existing work is proposed by maximizing the likelihood of observed instance-level triples. Not much attention, however, is paid to the ontological information, such as type information of entities and relations. In this work, we propose a type-augmented relation prediction (TaRP) method, where we apply both the type information and instance-level information for relation prediction. In particular, type information and instance-level information are encoded as prior probabilities and likelihoods of relations respectively, and are combined by following Bayes' rule. Our proposed TaRP method achieves significantly better performance than state-of-the-art methods on three benchmark datasets: FB15K, YAGO26K-906, and DB111K-174. In addition, we show that TaRP achieves significantly improved data efficiency. More importantly, the type information extracted from a specific dataset can generalize well to other datasets through the proposed TaRP model.


An Atlas of Cultural Commonsense for Machine Reasoning

arXiv.org Artificial Intelligence

Existing commonsense reasoning datasets for AI and NLP tasks fail to address an important aspect of human life: cultural differences. In this work, we introduce an approach that extends prior work on crowdsourcing commonsense knowledge by incorporating differences in knowledge that are attributable to cultural or national groups. We demonstrate the technique by collecting commonsense knowledge that surrounds three fairly universal rituals---coming-of-age, marriage, and funerals---across three different national groups: the United States, India, and the Philippines. Our pilot study expands the different types of relationships identified by existing work in the field of commonsense reasoning for commonplace events, and uses these new types to gather information that distinguishes the knowledge of the different groups. It also moves us a step closer towards building a machine that doesn't assume a rigid framework of universal (and likely Western-biased) commonsense knowledge, but rather has the ability to reason in a contextually and culturally sensitive way. Our hope is that cultural knowledge of this sort will lead to more human-like performance in NLP tasks such as question answering (QA) and text understanding and generation.


Enhancing Text-based Reinforcement Learning Agents with Commonsense Knowledge

arXiv.org Artificial Intelligence

In this paper, we consider the recent trend of evaluating progress on reinforcement learning technology by using text-based environments and games as evaluation environments. This reliance on text brings advances in natural language processing into the ambit of these agents, with a recurring thread being the use of external knowledge to mimic and better human-level performance. We present one such instantiation of agents that use commonsense knowledge from ConceptNet to show promising performance on two text-based environments.


CLAI: A Platform for AI Skills on the Command Line

arXiv.org Artificial Intelligence

This paper reports on the open source project CLAI (Command Line AI), aimed at bringing the power of AI to the command line interface. The platform sets up the CLI as a new environment for AI researchers to conquer by surfacing the command line as a generic environment that researchers can interface to using a simple sense-act API much like the traditional AI agent architecture. In this paper, we discuss the design and implementation of the platform in detail, through illustrative use cases of new end user interaction patterns enabled by this design, and through quantitative evaluation of the system footprint of a CLAI-enabled terminal. We also report on some early user feedback on its features from an internal survey.


Toward Cognitive and Immersive Systems: Experiments in a Cognitive Microworld

arXiv.org Artificial Intelligence

As computational power has continued to increase, and sensors have become more accurate, the corresponding advent of systems that are at once cognitive and immersive has arrived. These \textit{cognitive and immersive systems} (CAISs) fall squarely into the intersection of AI with HCI/HRI: such systems interact with and assist the human agents that enter them, in no small part because such systems are infused with AI able to understand and reason about these humans and their knowledge, beliefs, goals, communications, plans, etc. We herein explain our approach to engineering CAISs. We emphasize the capacity of a CAIS to develop and reason over a `theory of the mind' of its human partners. This capacity entails that the AI in question has a sophisticated model of the beliefs, knowledge, goals, desires, emotions, etc.\ of these humans. To accomplish this engineering, a formal framework of very high expressivity is needed. In our case, this framework is a \textit{cognitive event calculus}, a particular kind of quantified multi-operator modal logic, and a matching high-expressivity automated reasoner and planner. To explain, advance, and to a degree validate our approach, we show that a calculus of this type satisfies a set of formal requirements, and can enable a CAIS to understand a psychologically tricky scenario couched in what we call the \textit{cognitive polysolid framework} (CPF). We also formally show that a room that satisfies these requirements can have a useful property we term \emph{expectation of usefulness}. CPF, a sub-class of \textit{cognitive microworlds}, includes machinery able to represent and plan over not merely blocks and actions (such as seen in the primitive `blocks worlds' of old), but also over agents and their mental attitudes about both other agents and inanimate objects.


Tentacular Artificial Intelligence, and the Architecture Thereof, Introduced

arXiv.org Artificial Intelligence

We briefly introduce herein a new form of distributed, multi-agent artificial intelligence, which we refer to as "tentacular." Tentacular AI is distinguished by six attributes, which among other things entail a capacity for reasoning and planning based in highly expressive calculi (logics), and which enlists subsidiary agents across distances circumscribed only by the reach of one or more given networks.


Improving Natural Language Inference Using External Knowledge in the Science Questions Domain

arXiv.org Artificial Intelligence

Natural Language Inference (NLI) is fundamental to many Natural Language Processing (NLP) applications including semantic search and question answering. The NLI problem has gained significant attention thanks to the release of large scale, challenging datasets. Present approaches to the problem largely focus on learning-based methods that use only textual information in order to classify whether a given premise entails, contradicts, or is neutral with respect to a given hypothesis. Surprisingly, the use of methods based on structured knowledge -- a central topic in artificial intelligence -- has not received much attention vis-a-vis the NLI problem. While there are many open knowledge bases that contain various types of reasoning information, their use for NLI has not been well explored. To address this, we present a combination of techniques that harness knowledge graphs to improve performance on the NLI problem in the science questions domain. We present the results of applying our techniques on text, graph, and text-to-graph based models, and discuss implications for the use of external knowledge in solving the NLI problem. Our model achieves the new state-of-the-art performance on the NLI problem over the SciTail science questions dataset.


Answering Science Exam Questions Using Query Rewriting with Background Knowledge

arXiv.org Artificial Intelligence

Open-domain question answering (QA) is an important problem in AI and NLP that is emerging as a bellwether for progress on the generalizability of AI methods and techniques. Much of the progress in open-domain QA systems has been realized through advances in information retrieval methods and corpus construction. In this paper, we focus on the recently introduced ARC Challenge dataset, which contains 2,590 multiple choice questions authored for grade-school science exams. These questions are selected to be the most challenging for current QA systems, and current state of the art performance is only slightly better than random chance. We present a system that rewrites a given question into queries that are used to retrieve supporting text from a large corpus of science-related text. Our rewriter is able to incorporate background knowledge from ConceptNet and -- in tandem with a generic textual entailment system trained on SciTail that identifies support in the retrieved results -- outperforms several strong baselines on the end-to-end QA task despite only being trained to identify essential terms in the original source question. We use a generalizable decision methodology over the retrieved evidence and answer candidates to select the best answer. By combining query rewriting, background knowledge, and textual entailment our system is able to outperform several strong baselines on the ARC dataset.


A Systematic Classification of Knowledge, Reasoning, and Context within the ARC Dataset

arXiv.org Artificial Intelligence

The recent work of Clark et al. introduces the AI2 Reasoning Challenge (ARC) and the associated ARC dataset that partitions open domain, complex science questions into an Easy Set and a Challenge Set. That paper includes an analysis of 100 questions with respect to the types of knowledge and reasoning required to answer them; however, it does not include clear definitions of these types, nor does it offer information about the quality of the labels. We propose a comprehensive set of definitions of knowledge and reasoning types necessary for answering the questions in the ARC dataset. Using ten annotators and a sophisticated annotation interface, we analyze the distribution of labels across the Challenge Set and statistics related to them. Additionally, we demonstrate that although naive information retrieval methods return sentences that are irrelevant to answering the query, sufficient supporting text is often present in the (ARC) corpus. Evaluating with human-selected relevant sentences improves the performance of a neural machine comprehension model by 42 points.


User Interfaces and Scheduling and Planning: Workshop Summary and Proposed Challenges

AAAI Conferences

The User Interfaces and Scheduling and Planning (UISP) Workshop had its inaugural meeting at the 2017 International Conference on Automated Scheduling and Planning (ICAPS). The UISP community focuses on bridging the gap between automated planning and scheduling technologies and user interface (UI) technologies. Planning and scheduling systems need UIs, and UIs can be designed and built using planning and scheduling systems. The workshop participants included representatives from government organizations, industry, and academia with various insights and novel challenges. We summarize the discussions from the workshop as well as outline challenges related to this area of research, introducing the now formally established field to the broader user experience and artificial intelligence communities.