Talak, Rajat
Outlier-Robust Training of Machine Learning Models
Talak, Rajat, Georgiou, Charis, Shi, Jingnan, Carlone, Luca
Robust training of machine learning models in the presence of outliers has garnered attention across various domains. The use of robust losses is a popular approach and is known to mitigate the impact of outliers. We bring to light two literatures that have diverged in their ways of designing robust losses: one using M-estimation, which is popular in robotics and computer vision, and another using a risk-minimization framework, which is popular in deep learning. We first show that a simple modification of the Black-Rangarajan duality provides a unifying view. The modified duality brings out a definition of a robust loss kernel $\sigma$ that is satisfied by robust losses in both the literatures. Secondly, using the modified duality, we propose an Adaptive Alternation Algorithm (AAA) for training machine learning models with outliers. The algorithm iteratively trains the model by using a weighted version of the non-robust loss, while updating the weights at each iteration. The algorithm is augmented with a novel parameter update rule by interpreting the weights as inlier probabilities, and obviates the need for complex parameter tuning. Thirdly, we investigate convergence of the adaptive alternation algorithm to outlier-free optima. Considering arbitrary outliers (i.e., with no distributional assumption on the outliers), we show that the use of robust loss kernels {\sigma} increases the region of convergence. We experimentally show the efficacy of our algorithm on regression, classification, and neural scene reconstruction problems. We release our implementation code: https://github.com/MIT-SPARK/ORT.
CRISP: Object Pose and Shape Estimation with Test-Time Adaptation
Shi, Jingnan, Talak, Rajat, Zhang, Harry, Jin, David, Carlone, Luca
We consider the problem of estimating object pose and shape from an RGB-D image. Our first contribution is to introduce CRISP, a category-agnostic object pose and shape estimation pipeline. The pipeline implements an encoder-decoder model for shape estimation. It uses FiLM-conditioning for implicit shape reconstruction and a DPT-based network for estimating pose-normalized points for pose estimation. As a second contribution, we propose an optimization-based pose and shape corrector that can correct estimation errors caused by a domain gap. Observing that the shape decoder is well behaved in the convex hull of known shapes, we approximate the shape decoder with an active shape model, and show that this reduces the shape correction problem to a constrained linear least squares problem, which can be solved efficiently by an interior point algorithm. Third, we introduce a self-training pipeline to perform self-supervised domain adaptation of CRISP. The self-training is based on a correct-and-certify approach, which leverages the corrector to generate pseudo-labels at test time, and uses them to self-train CRISP. We demonstrate CRISP (and the self-training) on YCBV, SPE3R, and NOCS datasets. CRISP shows high performance on all the datasets. Moreover, our self-training is capable of bridging a large domain gap. Finally, CRISP also shows an ability to generalize to unseen objects. Code and pre-trained models will be available on https://web.mit.edu/sparklab/research/crisp_object_pose_shape/.
Safe Distributed Control of Multi-Robot Systems with Communication Delays
Ballotta, Luca, Talak, Rajat
Safe operation of multi-robot systems is critical, especially in communication-degraded environments such as underwater for seabed mapping, underground caves for navigation, and in extraterrestrial missions for assembly and construction. We address safety of networked autonomous systems where the information exchanged between robots incurs communication delays. We formalize a notion of distributed control barrier function (CBF) for multi-robot systems, a safety certificate amenable to a distributed implementation, which provides formal ground to using graph neural networks to learn safe distributed controllers. Further, we observe that learning a distributed controller ignoring delays can severely degrade safety. Our main contribution is a predictor-based framework to train a safe distributed controller under communication delays, where the current state of nearby robots is predicted from received data and age-of-information. Numerical experiments on multi-robot collision avoidance show that our predictor-based approach can significantly improve the safety of a learned distributed controller under communication delays
Leveraging Large (Visual) Language Models for Robot 3D Scene Understanding
Chen, William, Hu, Siyi, Talak, Rajat, Carlone, Luca
Abstract semantic 3D scene understanding is a problem of critical importance in robotics. As robots still lack the common-sense knowledge about household objects and locations of an average human, we investigate the use of pre-trained language models to impart common sense for scene understanding. We introduce and compare a wide range of scene classification paradigms that leverage language only (zero-shot, embedding-based, and structured-language) or vision and language (zero-shot and fine-tuned). We find that the best approaches in both categories yield $\sim 70\%$ room classification accuracy, exceeding the performance of pure-vision and graph classifiers. We also find such methods demonstrate notable generalization and transfer capabilities stemming from their use of language.
A Correct-and-Certify Approach to Self-Supervise Object Pose Estimators via Ensemble Self-Training
Shi, Jingnan, Talak, Rajat, Maggio, Dominic, Carlone, Luca
Real-world robotics applications demand object pose estimation methods that work reliably across a variety of scenarios. Modern learning-based approaches require large labeled datasets and tend to perform poorly outside the training domain. Our first contribution is to develop a robust corrector module that corrects pose estimates using depth information, thus enabling existing methods to better generalize to new test domains; the corrector operates on semantic keypoints (but is also applicable to other pose estimators) and is fully differentiable. Our second contribution is an ensemble self-training approach that simultaneously trains multiple pose estimators in a self-supervised manner. Our ensemble self-training architecture uses the robust corrector to refine the output of each pose estimator; then, it evaluates the quality of the outputs using observable correctness certificates; finally, it uses the observably correct outputs for further training, without requiring external supervision. As an additional contribution, we propose small improvements to a regression-based keypoint detection architecture, to enhance its robustness to outliers; these improvements include a robust pooling scheme and a robust centroid computation. Experiments on the YCBV and TLESS datasets show the proposed ensemble self-training outperforms fully supervised baselines while not requiring 3D annotations on real data.
Foundations of Spatial Perception for Robotics: Hierarchical Representations and Real-time Systems
Hughes, Nathan, Chang, Yun, Hu, Siyi, Talak, Rajat, Abdulhai, Rumaisa, Strader, Jared, Carlone, Luca
3D spatial perception is the problem of building and maintaining an actionable and persistent representation of the environment in real-time using sensor data and prior knowledge. Despite the fast-paced progress in robot perception, most existing methods either build purely geometric maps (as in traditional SLAM) or flat metric-semantic maps that do not scale to large environments or large dictionaries of semantic labels. The first part of this paper is concerned with representations: we show that scalable representations for spatial perception need to be hierarchical in nature. Hierarchical representations are efficient to store, and lead to layered graphs with small treewidth, which enable provably efficient inference. We then introduce an example of hierarchical representation for indoor environments, namely a 3D scene graph, and discuss its structure and properties. The second part of the paper focuses on algorithms to incrementally construct a 3D scene graph as the robot explores the environment. Our algorithms combine 3D geometry, topology (to cluster the places into rooms), and geometric deep learning (e.g., to classify the type of rooms the robot is moving across). The third part of the paper focuses on algorithms to maintain and correct 3D scene graphs during long-term operation. We propose hierarchical descriptors for loop closure detection and describe how to correct a scene graph in response to loop closures, by solving a 3D scene graph optimization problem. We conclude the paper by combining the proposed perception algorithms into Hydra, a real-time spatial perception system that builds a 3D scene graph from visual-inertial data in real-time. We showcase Hydra's performance in photo-realistic simulations and real data collected by a Clearpath Jackal robots and a Unitree A1 robot. We release an open-source implementation of Hydra at https://github.com/MIT-SPARK/Hydra.
Certifiable 3D Object Pose Estimation: Foundations, Learning Models, and Self-Training
Talak, Rajat, Peng, Lisa, Carlone, Luca
We consider a certifiable object pose estimation problem, where -- given a partial point cloud of an object -- the goal is to not only estimate the object pose, but also to provide a certificate of correctness for the resulting estimate. Our first contribution is a general theory of certification for end-to-end perception models. In particular, we introduce the notion of $\zeta$-correctness, which bounds the distance between an estimate and the ground truth. We show that $\zeta$-correctness can be assessed by implementing two certificates: (i) a certificate of observable correctness, that asserts if the model output is consistent with the input data and prior information, (ii) a certificate of non-degeneracy, that asserts whether the input data is sufficient to compute a unique estimate. Our second contribution is to apply this theory and design a new learning-based certifiable pose estimator. We propose C-3PO, a semantic-keypoint-based pose estimation model, augmented with the two certificates, to solve the certifiable pose estimation problem. C-3PO also includes a keypoint corrector, implemented as a differentiable optimization layer, that can correct large detection errors (e.g. due to the sim-to-real gap). Our third contribution is a novel self-supervised training approach that uses our certificate of observable correctness to provide the supervisory signal to C-3PO during training. In it, the model trains only on the observably correct input-output pairs, in each training iteration. As training progresses, we see that the observably correct input-output pairs grow, eventually reaching near 100% in many cases. Our experiments show that (i) standard semantic-keypoint-based methods outperform more recent alternatives, (ii) C-3PO further improves performance and significantly outperforms all the baselines, and (iii) C-3PO's certificates are able to discern correct pose estimates.
PyPose: A Library for Robot Learning with Physics-based Optimization
Wang, Chen, Gao, Dasong, Xu, Kuan, Geng, Junyi, Hu, Yaoyu, Qiu, Yuheng, Li, Bowen, Yang, Fan, Moon, Brady, Pandey, Abhinav, Aryan, null, Xu, Jiahe, Wu, Tianhao, He, Haonan, Huang, Daning, Ren, Zhongqiang, Zhao, Shibo, Fu, Taimeng, Reddy, Pranay, Lin, Xiao, Wang, Wenshan, Shi, Jingnan, Talak, Rajat, Cao, Kun, Du, Yi, Wang, Han, Yu, Huai, Wang, Shanzhao, Chen, Siyu, Kashyap, Ananth, Bandaru, Rohan, Dantu, Karthik, Wu, Jiajun, Xie, Lihua, Carlone, Luca, Hutter, Marco, Scherer, Sebastian
Deep learning has had remarkable success in robotic perception, but its data-centric nature suffers when it comes to generalizing to ever-changing environments. By contrast, physics-based optimization generalizes better, but it does not perform as well in complicated tasks due to the lack of high-level semantic information and reliance on manual parametric tuning. To take advantage of these two complementary worlds, we present PyPose: a robotics-oriented, PyTorch-based library that combines deep perceptual models with physics-based optimization. PyPose's architecture is tidy and well-organized, it has an imperative style interface and is efficient and user-friendly, making it easy to integrate into real-world robotic applications. Besides, it supports parallel computing of any order gradients of Lie groups and Lie algebras and $2^{\text{nd}}$-order optimizers, such as trust region methods. Experiments show that PyPose achieves more than $10\times$ speedup in computation compared to the state-of-the-art libraries. To boost future research, we provide concrete examples for several fields of robot learning, including SLAM, planning, control, and inertial navigation.
A Theory of Uncertainty Variables for State Estimation and Inference
Talak, Rajat, Karaman, Sertac, Modiano, Eytan
While it provides a good foundation to system modeling, analysis, and an understanding of the real world, its application to algorithm design suffers from computational intractability. In this work, we develop a new framework of uncertainty variables to model uncertainty. A simple uncertainty variable is characterized by an uncertainty set, in which its realization is bound to lie, while the conditional uncertainty is characterized by a set map, from a given realization of a variable to a set of possible realizations of another variable. We prove Bayes' law and the law of total probability equivalents for uncertainty variables. We define a notion of independence, conditional independence, and pairwise independence for a collection of uncertainty variables, and show that this new notion of independence preserves the properties of independence defined over random variables. We then develop a graphical model, namely Bayesian uncertainty network, a Bayesian network equivalent defined over a collection of uncertainty variables, and show that all the natural conditional independence properties, expected out of a Bayesian network, hold for the Bayesian uncertainty network. We also define the notion of point estimate, and show its relation with the maximum a posteriori estimate.