Goto

Collaborating Authors

 Takashi Ishida



Binary Classification from Positive-Confidence Data

Neural Information Processing Systems

Can we learn a binary classifier from only positive data, without any negative data or unlabeled data? We show that if one can equip positive data with confidence (positive-confidence), one can successfully learn a binary classifier, which we name positive-confidence (Pconf) classification. Our work is related to one-class classification which is aimed at "describing" the positive class by clustering-related methods, but one-class classification does not have the ability to tune hyper-parameters and their aim is not on "discriminating" positive and negative classes. For the Pconf classification problem, we provide a simple empirical risk minimization framework that is model-independent and optimization-independent. We theoretically establish the consistency and an estimation error bound, and demonstrate the usefulness of the proposed method for training deep neural networks through experiments.


Learning from Complementary Labels

Neural Information Processing Systems

Collecting labeled data is costly and thus a critical bottleneck in real-world classification tasks. To mitigate this problem, we propose a novel setting, namely learning from complementary labels for multi-class classification. A complementary label specifies a class that a pattern does not belong to. Collecting complementary labels would be less laborious than collecting ordinary labels, since users do not have to carefully choose the correct class from a long list of candidate classes. However, complementary labels are less informative than ordinary labels and thus a suitable approach is needed to better learn from them. In this paper, we show that an unbiased estimator to the classification risk can be obtained only from complementarily labeled data, if a loss function satisfies a particular symmetric condition. We derive estimation error bounds for the proposed method and prove that the optimal parametric convergence rate is achieved. We further show that learning from complementary labels can be easily combined with learning from ordinary labels (i.e., ordinary supervised learning), providing a highly practical implementation of the proposed method. Finally, we experimentally demonstrate the usefulness of the proposed methods.