Goto

Collaborating Authors

 Takahashi, Koichi


Universal AI maximizes Variational Empowerment

arXiv.org Machine Learning

This paper presents a theoretical framework unifying AIXI -- a model of universal AI -- with variational empowerment as an intrinsic drive for exploration. We build on the existing framework of Self-AIXI -- a universal learning agent that predicts its own actions -- by showing how one of its established terms can be interpreted as a variational empowerment objective. We further demonstrate that universal AI's planning process can be cast as minimizing expected variational free energy (the core principle of active Inference), thereby revealing how universal AI agents inherently balance goal-directed behavior with uncertainty reduction curiosity). Moreover, we argue that power-seeking tendencies of universal AI agents can be explained not only as an instrumental strategy to secure future reward, but also as a direct consequence of empowerment maximization -- i.e. the agent's intrinsic drive to maintain or expand its own controllability in uncertain environments. Our main contribution is to show how these intrinsic motivations (empowerment, curiosity) systematically lead universal AI agents to seek and sustain high-optionality states. We prove that Self-AIXI asymptotically converges to the same performance as AIXI under suitable conditions, and highlight that its power-seeking behavior emerges naturally from both reward maximization and curiosity-driven exploration. Since AIXI can be view as a Bayes-optimal mathematical formulation for Artificial General Intelligence (AGI), our result can be useful for further discussion on AI safety and the controllability of AGI.


The Future of Fundamental Science Led by Generative Closed-Loop Artificial Intelligence

arXiv.org Artificial Intelligence

Recent advances in machine learning and AI, including Generative AI and LLMs, are disrupting technological innovation, product development, and society as a whole. AI's contribution to technology can come from multiple approaches that require access to large training data sets and clear performance evaluation criteria, ranging from pattern recognition and classification to generative models. Yet, AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access. Generative AI, in general, and Large Language Models in particular, may represent an opportunity to augment and accelerate the scientific discovery of fundamental deep science with quantitative models. Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery, including self-driven hypothesis generation and open-ended autonomous exploration of the hypothesis space. Integrating AI-driven automation into the practice of science would mitigate current problems, including the replication of findings, systematic production of data, and ultimately democratisation of the scientific process. Realising these possibilities requires a vision for augmented AI coupled with a diversity of AI approaches able to deal with fundamental aspects of causality analysis and model discovery while enabling unbiased search across the space of putative explanations. These advances hold the promise to unleash AI's potential for searching and discovering the fundamental structure of our world beyond what human scientists have been able to achieve. Such a vision would push the boundaries of new fundamental science rather than automatize current workflows and instead open doors for technological innovation to tackle some of the greatest challenges facing humanity today.


Scenarios and branch points to future machine intelligence

arXiv.org Artificial Intelligence

We discuss scenarios and branch points to four major possible consequences regarding future machine intelligence; 1) the singleton scenario where the first and only super-intelligence acquires a decisive strategic advantage, 2) the multipolar scenario where the singleton scenario is not technically denied but political or other factors in human society or multi-agent interactions between the intelligent agents prevent a single agent from gaining a decisive strategic advantage, 3) the ecosystem scenario where the singleton scenario is denied and many autonomous intelligent agents operate in such a way that they are interdependent and virtually unstoppable, and 4) the upper-bound scenario where cognitive capabilities that can be achieved by human-designed intelligent agents or their descendants are inherently limited to the sub-human level. We identify six major constraints that can form branch points to these scenarios; (1) constraints on autonomy, (2) constraints on the ability to improve self-structure, (3) constraints related to thermodynamic efficiency, (4) constraints on updating physical infrastructure, (5) constraints on relative advantage, and (6) constraints on locality.