Goto

Collaborating Authors

 Tai, Chang-You


Exploring Chain-of-Thought Style Prompting for Text-to-SQL

arXiv.org Artificial Intelligence

In-context learning with large language models (LLMs) has recently caught increasing attention due to its superior few-shot performance on various tasks. However, its performance on text-to-SQL parsing still has much room for improvement. In this paper, we hypothesize that a crucial aspect of LLMs to improve for text-to-SQL parsing is their multi-step reasoning ability. Thus, we systematically study how to enhance LLMs' reasoning ability through chain of thought (CoT) style prompting, including the original chain-of-thought prompting (Wei et al., 2022b) and least-to-most prompting (Zhou et al., 2023). Our experiments demonstrate that iterative prompting as in Zhou et al. (2023) may be unnecessary for text-to-SQL parsing, and using detailed reasoning steps tends to have more error propagation issues. Based on these findings, we propose a new CoT-style prompting method for text-to-SQL parsing. It brings 5.2 and 6.5 point absolute gains on the Spider development set and the Spider Realistic set, respectively, compared to the standard prompting method without reasoning steps; 2.4 and 1.5 point absolute gains, compared to the least-to-most prompting method.


Roll Up Your Sleeves: Working with a Collaborative and Engaging Task-Oriented Dialogue System

arXiv.org Artificial Intelligence

We introduce TacoBot, a user-centered task-oriented digital assistant designed to guide users through complex real-world tasks with multiple steps. Covering a wide range of cooking and how-to tasks, we aim to deliver a collaborative and engaging dialogue experience. Equipped with language understanding, dialogue management, and response generation components supported by a robust search engine, TacoBot ensures efficient task assistance. To enhance the dialogue experience, we explore a series of data augmentation strategies using LLMs to train advanced neural models continuously. TacoBot builds upon our successful participation in the inaugural Alexa Prize TaskBot Challenge, where our team secured third place among ten competing teams. We offer TacoBot as an open-source framework that serves as a practical example for deploying task-oriented dialogue systems.


Hyperbolic Disentangled Representation for Fine-Grained Aspect Extraction

arXiv.org Artificial Intelligence

Automatic identification of salient aspects from user reviews is especially useful for opinion analysis. There has been significant progress in utilizing weakly supervised approaches, which require only a small set of seed words for training aspect classifiers. However, there is always room for improvement. First, no weakly supervised approaches fully utilize latent hierarchies between words. Second, each seed words representation should have different latent semantics and be distinct when it represents a different aspect. In this paper, we propose HDAE, a hyperbolic disentangled aspect extractor in which a hyperbolic aspect classifier captures words latent hierarchies, and aspect-disentangled representation models the distinct latent semantics of each seed word. Compared to previous baselines, HDAE achieves average F1 performance gains of 18.2% and 24.1% on Amazon product review and restaurant review datasets, respectively. In addition, the em-bedding visualization experience demonstrates that HDAE is a more effective approach to leveraging seed words. An ablation study and a case study further attest to the effectiveness of the proposed components


GraphSW: a training protocol based on stage-wise training for GNN-based Recommender Model

arXiv.org Machine Learning

Recently, researchers utilize Knowledge Graph (KG) as side information in recommendation system to address cold start and sparsity issue and improve the recommendation performance. Existing KG-aware recommendation model use the feature of neighboring entities and structural information to update the embedding of currently located entity. Although the fruitful information is beneficial to the following task, the cost of exploring the entire graph is massive and impractical. In order to reduce the computational cost and maintain the pattern of extracting features, KG-aware recommendation model usually utilize fixed-size and random set of neighbors rather than complete information in KG. Nonetheless, there are two critical issues in these approaches: First of all, fixed-size and randomly selected neighbors restrict the view of graph. In addition, as the order of graph feature increases, the growth of parameter dimensionality of the model may lead the training process hard to converge. To solve the aforementioned limitations, we propose GraphSW, a strategy based on stage-wise training framework which would only access to a subset of the entities in KG in every stage. During the following stages, the learned embedding from previous stages is provided to the network in the next stage and the model can learn the information gradually from the KG. We apply stage-wise training on two SOTA recommendation models, RippleNet and Knowledge Graph Convolutional Networks (KGCN). Moreover, we evaluate the performance on six real world datasets, Last.FM 2011, Book-Crossing,movie, LFM-1b 2015, Amazon-book and Yelp 2018. The result of our experiments shows that proposed strategy can help both models to collect more information from the KG and improve the performance. Furthermore, it is observed that GraphSW can assist KGCN to converge effectively in high-order graph feature.