Tafjord, Oyvind
2 OLMo 2 Furious
OLMo, Team, Walsh, Pete, Soldaini, Luca, Groeneveld, Dirk, Lo, Kyle, Arora, Shane, Bhagia, Akshita, Gu, Yuling, Huang, Shengyi, Jordan, Matt, Lambert, Nathan, Schwenk, Dustin, Tafjord, Oyvind, Anderson, Taira, Atkinson, David, Brahman, Faeze, Clark, Christopher, Dasigi, Pradeep, Dziri, Nouha, Guerquin, Michal, Ivison, Hamish, Koh, Pang Wei, Liu, Jiacheng, Malik, Saumya, Merrill, William, Miranda, Lester James V., Morrison, Jacob, Murray, Tyler, Nam, Crystal, Pyatkin, Valentina, Rangapur, Aman, Schmitz, Michael, Skjonsberg, Sam, Wadden, David, Wilhelm, Christopher, Wilson, Michael, Zettlemoyer, Luke, Farhadi, Ali, Smith, Noah A., Hajishirzi, Hannaneh
We present OLMo 2, the next generation of our fully open language models. OLMo 2 includes dense autoregressive models with improved architecture and training recipe, pretraining data mixtures, and instruction tuning recipes. Our modified model architecture and training recipe achieve both better training stability and improved per-token efficiency. Our updated pretraining data mixture introduces a new, specialized data mix called Dolmino Mix 1124, which significantly improves model capabilities across many downstream task benchmarks when introduced via late-stage curriculum training (i.e. specialized data during the annealing phase of pretraining). Finally, we incorporate best practices from T\"ulu 3 to develop OLMo 2-Instruct, focusing on permissive data and extending our final-stage reinforcement learning with verifiable rewards (RLVR). Our OLMo 2 base models sit at the Pareto frontier of performance to compute, often matching or outperforming open-weight only models like Llama 3.1 and Qwen 2.5 while using fewer FLOPs and with fully transparent training data, code, and recipe. Our fully open OLMo 2-Instruct models are competitive with or surpassing open-weight only models of comparable size, including Qwen 2.5, Llama 3.1 and Gemma 2. We release all OLMo 2 artifacts openly -- models at 7B and 13B scales, both pretrained and post-trained, including their full training data, training code and recipes, training logs and thousands of intermediate checkpoints. The final instruction model is available on the Ai2 Playground as a free research demo.
From Models to Microtheories: Distilling a Model's Topical Knowledge for Grounded Question Answering
Weir, Nathaniel, Mishra, Bhavana Dalvi, Weller, Orion, Tafjord, Oyvind, Hornstein, Sam, Sabol, Alexander, Jansen, Peter, Van Durme, Benjamin, Clark, Peter
Recent reasoning methods (e.g., chain-of-thought, entailment reasoning) help users understand how language models (LMs) answer a single question, but they do little to reveal the LM's overall understanding, or "theory," about the question's topic, making it still hard to trust the model. Our goal is to materialize such theories - here called microtheories (a linguistic analog of logical microtheories) - as a set of sentences encapsulating an LM's core knowledge about a topic. These statements systematically work together to entail answers to a set of questions to both engender trust and improve performance. Our approach is to first populate a knowledge store with (model-generated) sentences that entail answers to training questions and then distill those down to a core microtheory that is concise, general, and non-redundant. We show that, when added to a general corpus (e.g., Wikipedia), microtheories can supply critical, topical information not necessarily present in the corpus, improving both a model's ability to ground its answers to verifiable knowledge (i.e., show how answers are systematically entailed by documents in the corpus, fully grounding up to +8% more answers), and the accuracy of those grounded answers (up to +8% absolute). We also show that, in a human evaluation in the medical domain, our distilled microtheories contain a significantly higher concentration of topically critical facts than the non-distilled knowledge store. Finally, we show we can quantify the coverage of a microtheory for a topic (characterized by a dataset) using a notion of $p$-relevance. Together, these suggest that microtheories are an efficient distillation of an LM's topic-relevant knowledge, that they can usefully augment existing corpora, and can provide both performance gains and an interpretable, verifiable window into the model's knowledge of a topic.
Tulu 3: Pushing Frontiers in Open Language Model Post-Training
Lambert, Nathan, Morrison, Jacob, Pyatkin, Valentina, Huang, Shengyi, Ivison, Hamish, Brahman, Faeze, Miranda, Lester James V., Liu, Alisa, Dziri, Nouha, Lyu, Shane, Gu, Yuling, Malik, Saumya, Graf, Victoria, Hwang, Jena D., Yang, Jiangjiang, Bras, Ronan Le, Tafjord, Oyvind, Wilhelm, Chris, Soldaini, Luca, Smith, Noah A., Wang, Yizhong, Dasigi, Pradeep, Hajishirzi, Hannaneh
Language model post-training is applied to refine behaviors and unlock new skills across a wide range of recent language models, but open recipes for applying these techniques lag behind proprietary ones. The underlying training data and recipes for post-training are simultaneously the most important pieces of the puzzle and the portion with the least transparency. To bridge this gap, we introduce Tulu 3, a family of fully-open state-of-the-art post-trained models, alongside its data, code, and training recipes, serving as a comprehensive guide for modern post-training techniques. Tulu 3, which builds on Llama 3.1 base models, achieves results surpassing the instruct versions of Llama 3.1, Qwen 2.5, Mistral, and even closed models such as GPT-4o-mini and Claude 3.5-Haiku. The training algorithms for our models include supervised finetuning (SFT), Direct Preference Optimization (DPO), and a novel method we call Reinforcement Learning with Verifiable Rewards (RLVR). With Tulu 3, we introduce a multi-task evaluation scheme for post-training recipes with development and unseen evaluations, standard benchmark implementations, and substantial decontamination of existing open datasets on said benchmarks. We conclude with analysis and discussion of training methods that did not reliably improve performance. In addition to the Tulu 3 model weights and demo, we release the complete recipe -- including datasets for diverse core skills, a robust toolkit for data curation and evaluation, the training code and infrastructure, and, most importantly, a detailed report for reproducing and further adapting the Tulu 3 approach to more domains.
Establishing Task Scaling Laws via Compute-Efficient Model Ladders
Bhagia, Akshita, Liu, Jiacheng, Wettig, Alexander, Heineman, David, Tafjord, Oyvind, Jha, Ananya Harsh, Soldaini, Luca, Smith, Noah A., Groeneveld, Dirk, Koh, Pang Wei, Dodge, Jesse, Hajishirzi, Hannaneh
We develop task scaling laws and model ladders to predict the individual task performance of pretrained language models (LMs) in the overtrained setting. Standard power laws for language modeling loss cannot accurately model task performance. Therefore, we leverage a two-step prediction approach: first use model and data size to predict a task-specific loss, and then use this task loss to predict task performance. We train a set of small-scale "ladder" models, collect data points to fit the parameterized functions of the two prediction steps, and make predictions for two target models: a 7B model trained to 4T tokens and a 13B model trained to 5T tokens. Training the ladder models only costs 1% of the compute used for the target models. On four multiple-choice tasks written in ranked classification format, we can predict the accuracy of both target models within 2 points of absolute error. We have higher prediction error on four other tasks (average absolute error 6.9) and find that these are often tasks with higher variance in task metrics. We also find that using less compute to train fewer ladder models tends to deteriorate predictions. Finally, we empirically show that our design choices and the two-step approach lead to superior performance in establishing scaling laws.
SimpleToM: Exposing the Gap between Explicit ToM Inference and Implicit ToM Application in LLMs
Gu, Yuling, Tafjord, Oyvind, Kim, Hyunwoo, Moore, Jared, Bras, Ronan Le, Clark, Peter, Choi, Yejin
While prior work has explored whether large language models (LLMs) possess a "theory of mind" (ToM) - the ability to attribute mental states to oneself and others - there has been little work testing whether LLMs can implicitly apply such knowledge to predict behavior, or to judge whether an observed behavior is rational. Such skills are critical for appropriate interaction in social environments. We create a new dataset, SimpleTom, containing concise, diverse stories (e.g., "The can of Pringles has moldy chips in it. Mary picks up the can in the supermarket and walks to the cashier."), each with three questions that test different degrees of ToM reasoning, asking models to predict (a) mental state ("Is Mary aware of the mold?"), (b) behavior ("Will Mary pay for the chips or report the mold?"), and (c) judgment ("Mary paid for the chips. Was that reasonable?"). To our knowledge, SimpleToM is the first dataset to systematically explore downstream reasoning requiring knowledge of mental states in realistic scenarios. Our experimental results are intriguing: While most models can reliably predict mental state on our dataset (a), they often fail to correctly predict the behavior (b), and fare even worse at judging whether given behaviors are reasonable (c), despite being correctly aware of the protagonist's mental state should make such secondary predictions obvious. We further show that we can help models do better at (b) and (c) via interventions such as reminding the model of its earlier mental state answer and mental-state-specific chain-of-thought prompting, raising the action prediction accuracies (e.g., from 49.5% to 93.5% for GPT-4o) and judgment accuracies (e.g., from 15.3% to 94.7% in GPT-4o). While this shows that models can be coaxed to perform well, it requires task-specific interventions, and the natural model performances remain low, a cautionary tale for LLM deployment.
OLMES: A Standard for Language Model Evaluations
Gu, Yuling, Tafjord, Oyvind, Kuehl, Bailey, Haddad, Dany, Dodge, Jesse, Hajishirzi, Hannaneh
Progress in AI is often demonstrated by new models claiming improved performance on tasks measuring model capabilities. Evaluating language models in particular is challenging, as small changes to how a model is evaluated on a task can lead to large changes in measured performance. There is no common standard setup, so different models are evaluated on the same tasks in different ways, leading to claims about which models perform best not being reproducible. We propose OLMES, a completely documented, practical, open standard for reproducible LLM evaluations. In developing this standard, we identify and review the varying factors in evaluation practices adopted by the community - such as details of prompt formatting, choice of in-context examples, probability normalizations, and task formulation. In particular, OLMES supports meaningful comparisons between smaller base models that require the unnatural "cloze" formulation of multiple-choice questions against larger models that can utilize the original formulation. OLMES includes well-considered recommendations guided by results from existing literature as well as new experiments investigating open questions.
DISCOVERYWORLD: A Virtual Environment for Developing and Evaluating Automated Scientific Discovery Agents
Jansen, Peter, Cรดtรฉ, Marc-Alexandre, Khot, Tushar, Bransom, Erin, Mishra, Bhavana Dalvi, Majumder, Bodhisattwa Prasad, Tafjord, Oyvind, Clark, Peter
Automated scientific discovery promises to accelerate progress across scientific domains. However, developing and evaluating an AI agent's capacity for end-to-end scientific reasoning is challenging as running real-world experiments is often prohibitively expensive or infeasible. In this work we introduce DISCOVERYWORLD, the first virtual environment for developing and benchmarking an agent's ability to perform complete cycles of novel scientific discovery. DISCOVERYWORLD contains a variety of different challenges, covering topics as diverse as radioisotope dating, rocket science, and proteomics, to encourage development of general discovery skills rather than task-specific solutions. DISCOVERYWORLD itself is an inexpensive, simulated, text-based environment (with optional 2D visual overlay). It includes 120 different challenge tasks, spanning eight topics each with three levels of difficulty and several parametric variations. Each task requires an agent to form hypotheses, design and run experiments, analyze results, and act on conclusions. DISCOVERYWORLD further provides three automatic metrics for evaluating performance, based on (a) task completion, (b) task-relevant actions taken, and (c) the discovered explanatory knowledge. We find that strong baseline agents, that perform well in prior published environments, struggle on most DISCOVERYWORLD tasks, suggesting that DISCOVERYWORLD captures some of the novel challenges of discovery, and thus that DISCOVERYWORLD may help accelerate near-term development and assessment of scientific discovery competency in agents. Code available at: www.github.com/allenai/discoveryworld
Enhancing Systematic Decompositional Natural Language Inference Using Informal Logic
Weir, Nathaniel, Sanders, Kate, Weller, Orion, Sharma, Shreya, Jiang, Dongwei, Jiang, Zhengping, Mishra, Bhavana Dalvi, Tafjord, Oyvind, Jansen, Peter, Clark, Peter, Van Durme, Benjamin
Contemporary language models enable new opportunities for structured reasoning with text, such as the construction and evaluation of intuitive, proof-like textual entailment trees without relying on brittle formal logic. However, progress in this direction has been hampered by a long-standing lack of a clear protocol for determining what valid compositional entailment is. This absence causes noisy datasets and limited performance gains by modern neuro-symbolic engines. To address these problems, we formulate a consistent and theoretically grounded approach to annotating decompositional entailment datasets, and evaluate its impact on LLM-based textual inference. We find that our resulting dataset, RDTE (Recognizing Decompositional Textual Entailment), has a substantially higher internal consistency (+9%) than prior decompositional entailment datasets, suggesting that RDTE is a significant step forward in the long-standing problem of forming a clear protocol for discerning entailment. We also find that training an RDTE-oriented entailment classifier via knowledge distillation and employing it in a modern neuro-symbolic reasoning engine significantly improves results (both accuracy and proof quality) over other entailment classifier baselines, illustrating the practical benefit of this advance for textual inference.
OLMo: Accelerating the Science of Language Models
Groeneveld, Dirk, Beltagy, Iz, Walsh, Pete, Bhagia, Akshita, Kinney, Rodney, Tafjord, Oyvind, Jha, Ananya Harsh, Ivison, Hamish, Magnusson, Ian, Wang, Yizhong, Arora, Shane, Atkinson, David, Authur, Russell, Chandu, Khyathi Raghavi, Cohan, Arman, Dumas, Jennifer, Elazar, Yanai, Gu, Yuling, Hessel, Jack, Khot, Tushar, Merrill, William, Morrison, Jacob, Muennighoff, Niklas, Naik, Aakanksha, Nam, Crystal, Peters, Matthew E., Pyatkin, Valentina, Ravichander, Abhilasha, Schwenk, Dustin, Shah, Saurabh, Smith, Will, Strubell, Emma, Subramani, Nishant, Wortsman, Mitchell, Dasigi, Pradeep, Lambert, Nathan, Richardson, Kyle, Zettlemoyer, Luke, Dodge, Jesse, Lo, Kyle, Soldaini, Luca, Smith, Noah A., Hajishirzi, Hannaneh
Language models (LMs) have become ubiquitous in both NLP research and in commercial product offerings. As their commercial importance has surged, the most powerful models have become closed off, gated behind proprietary interfaces, with important details of their training data, architectures, and development undisclosed. Given the importance of these details in scientifically studying these models, including their biases and potential risks, we believe it is essential for the research community to have access to powerful, truly open LMs. To this end, this technical report details the first release of OLMo, a state-of-the-art, truly Open Language Model and its framework to build and study the science of language modeling. Unlike most prior efforts that have only released model weights and inference code, we release OLMo and the whole framework, including training data and training and evaluation code. We hope this release will empower and strengthen the open research community and inspire a new wave of innovation.
Dolma: an Open Corpus of Three Trillion Tokens for Language Model Pretraining Research
Soldaini, Luca, Kinney, Rodney, Bhagia, Akshita, Schwenk, Dustin, Atkinson, David, Authur, Russell, Bogin, Ben, Chandu, Khyathi, Dumas, Jennifer, Elazar, Yanai, Hofmann, Valentin, Jha, Ananya Harsh, Kumar, Sachin, Lucy, Li, Lyu, Xinxi, Lambert, Nathan, Magnusson, Ian, Morrison, Jacob, Muennighoff, Niklas, Naik, Aakanksha, Nam, Crystal, Peters, Matthew E., Ravichander, Abhilasha, Richardson, Kyle, Shen, Zejiang, Strubell, Emma, Subramani, Nishant, Tafjord, Oyvind, Walsh, Pete, Zettlemoyer, Luke, Smith, Noah A., Hajishirzi, Hannaneh, Beltagy, Iz, Groeneveld, Dirk, Dodge, Jesse, Lo, Kyle
Language models have become a critical technology to tackling a wide range of natural language processing tasks, yet many details about how the best-performing language models were developed are not reported. In particular, information about their pretraining corpora is seldom discussed: commercial language models rarely provide any information about their data; even open models rarely release datasets they are trained on, or an exact recipe to reproduce them. As a result, it is challenging to conduct certain threads of language modeling research, such as understanding how training data impacts model capabilities and shapes their limitations. To facilitate open research on language model pretraining, we release Dolma, a three trillion tokens English corpus, built from a diverse mixture of web content, scientific papers, code, public-domain books, social media, and encyclopedic materials. In addition, we open source our data curation toolkit to enable further experimentation and reproduction of our work. In this report, we document Dolma, including its design principles, details about its construction, and a summary of its contents. We interleave this report with analyses and experimental results from training language models on intermediate states of Dolma to share what we have learned about important data curation practices, including the role of content or quality filters, deduplication, and multi-source mixing. Dolma has been used to train OLMo, a state-of-the-art, open language model and framework designed to build and study the science of language modeling.