Taesup Kim
Variational Temporal Abstraction
Taesup Kim, Sungjin Ahn, Yoshua Bengio
We introduce a variational approach to learning and inference of temporally hierarchical structure and representation for sequential data. We propose the Variational Temporal Abstraction (VTA), a hierarchical recurrent state space model that can infer the latent temporal structure and thus perform the stochastic state transition hierarchically. We also propose to apply this model to implement the jumpy imagination ability in imagination-augmented agent-learning in order to improve the efficiency of the imagination. In experiments, we demonstrate that our proposed method can model 2D and 3D visual sequence datasets with interpretable temporal structure discovery and that its application to jumpy imagination enables more efficient agent-learning in a 3D navigation task.
Fast AutoAugment
Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim, Sungwoong Kim
Data augmentation is an essential technique for improving generalization ability of deep learning models. Recently, AutoAugment [5] has been proposed as an algorithm to automatically search for augmentation policies from a dataset and has significantly enhanced performances on many image recognition tasks. However, its search method requires thousands of GPU hours even for a relatively small dataset. In this paper, we propose an algorithm called Fast AutoAugment that finds effective augmentation policies via a more efficient search strategy based on density matching. In comparison to AutoAugment, the proposed algorithm speeds up the search time by orders of magnitude while achieves comparable performances on image recognition tasks with various models and datasets including CIFAR-10, CIFAR-100, SVHN, and ImageNet.
Bayesian Model-Agnostic Meta-Learning
Jaesik Yoon, Taesup Kim, Ousmane Dia, Sungwoong Kim, Yoshua Bengio, Sungjin Ahn
Due to the inherent model uncertainty, learning to infer Bayesian posterior from a few-shot dataset is an important step towards robust meta-learning. In this paper, we propose a novel Bayesian model-agnostic meta-learning method. The proposed method combines efficient gradient-based meta-learning with nonparametric variational inference in a principled probabilistic framework. Unlike previous methods, during fast adaptation, the method is capable of learning complex uncertainty structure beyond a simple Gaussian approximation, and during meta-update, a novel Bayesian mechanism prevents meta-level overfitting. Remaining a gradientbased method, it is also the first Bayesian model-agnostic meta-learning method applicable to various tasks including reinforcement learning. Experiment results show the accuracy and robustness of the proposed method in sinusoidal regression, image classification, active learning, and reinforcement learning.
Variational Temporal Abstraction
Taesup Kim, Sungjin Ahn, Yoshua Bengio
Fast AutoAugment
Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim, Sungwoong Kim
Data augmentation is an essential technique for improving generalization ability of deep learning models. Recently, AutoAugment [5] has been proposed as an algorithm to automatically search for augmentation policies from a dataset and has significantly enhanced performances on many image recognition tasks. However, its search method requires thousands of GPU hours even for a relatively small dataset. In this paper, we propose an algorithm called Fast AutoAugment that finds effective augmentation policies via a more efficient search strategy based on density matching. In comparison to AutoAugment, the proposed algorithm speeds up the search time by orders of magnitude while achieves comparable performances on image recognition tasks with various models and datasets including CIFAR-10, CIFAR-100, SVHN, and ImageNet.