Not enough data to create a plot.
Try a different view from the menu above.
Tabor, Jacek
Contrastive Hierarchical Clustering
Znaleźniak, Michał, Rola, Przemysław, Kaszuba, Patryk, Tabor, Jacek, Śmieja, Marek
Deep clustering has been dominated by flat models, which split a dataset into a predefined number of groups. Although recent methods achieve an extremely high similarity with the ground truth on popular benchmarks, the information contained in the flat partition is limited. In this paper, we introduce CoHiClust, a Contrastive Hierarchical Clustering model based on deep neural networks, which can be applied to typical image data. By employing a self-supervised learning approach, CoHiClust distills the base network into a binary tree without access to any labeled data. The hierarchical clustering structure can be used to analyze the relationship between clusters, as well as to measure the similarity between data points. Experiments demonstrate that CoHiClust generates a reasonable structure of clusters, which is consistent with our intuition and image semantics. Moreover, it obtains superior clustering accuracy on most of the image datasets compared to the state-of-the-art flat clustering models. Our implementation is available at https://github.
ProMIL: Probabilistic Multiple Instance Learning for Medical Imaging
Struski, Łukasz, Rymarczyk, Dawid, Lewicki, Arkadiusz, Sabiniewicz, Robert, Tabor, Jacek, Zieliński, Bartosz
Multiple Instance Learning (MIL) is a weakly-supervised problem in which one label is assigned to the whole bag of instances. An important class of MIL models is instance-based, where we first classify instances and then aggregate those predictions to obtain a bag label. The most common MIL model is when we consider a bag as positive if at least one of its instances has a positive label. However, this reasoning does not hold in many real-life scenarios, where the positive bag label is often a consequence of a certain percentage of positive instances. To address this issue, we introduce a dedicated instance-based method called ProMIL, based on deep neural networks and Bernstein polynomial estimation. An important advantage of ProMIL is that it can automatically detect the optimal percentage level for decision-making. We show that ProMIL outperforms standard instance-based MIL in real-world medical applications. We make the code available.
Hypernetworks build Implicit Neural Representations of Sounds
Szatkowski, Filip, Piczak, Karol J., Spurek, Przemysław, Tabor, Jacek, Trzciński, Tomasz
Implicit Neural Representations (INRs) are nowadays used to represent multimedia signals across various real-life applications, including image super-resolution, image compression, or 3D rendering. Existing methods that leverage INRs are predominantly focused on visual data, as their application to other modalities, such as audio, is nontrivial due to the inductive biases present in architectural attributes of image-based INR models. To address this limitation, we introduce HyperSound, the first meta-learning approach to produce INRs for audio samples that leverages hypernetworks to generalize beyond samples observed in training. Our approach reconstructs audio samples with quality comparable to other state-of-the-art models and provides a viable alternative to contemporary sound representations used in deep neural networks for audio processing, such as spectrograms.
r-softmax: Generalized Softmax with Controllable Sparsity Rate
Bałazy, Klaudia, Struski, Łukasz, Śmieja, Marek, Tabor, Jacek
Nowadays artificial neural network models achieve remarkable results in many disciplines. Functions mapping the representation provided by the model to the probability distribution are the inseparable aspect of deep learning solutions. Although softmax is a commonly accepted probability mapping function in the machine learning community, it cannot return sparse outputs and always spreads the positive probability to all positions. In this paper, we propose r-softmax, a modification of the softmax, outputting sparse probability distribution with controllable sparsity rate. In contrast to the existing sparse probability mapping functions, we provide an intuitive mechanism for controlling the output sparsity level. We show on several multi-label datasets that r-softmax outperforms other sparse alternatives to softmax and is highly competitive with the original softmax. We also apply r-softmax to the self-attention module of a pre-trained transformer language model and demonstrate that it leads to improved performance when fine-tuning the model on different natural language processing tasks.
Revisiting Offline Compression: Going Beyond Factorization-based Methods for Transformer Language Models
Banaei, Mohammadreza, Bałazy, Klaudia, Kasymov, Artur, Lebret, Rémi, Tabor, Jacek, Aberer, Karl
Recent transformer language models achieve outstanding results in many natural language processing (NLP) tasks. However, their enormous size often makes them impractical on memory-constrained devices, requiring practitioners to compress them to smaller networks. In this paper, we explore offline compression methods, meaning computationally-cheap approaches that do not require further fine-tuning of the compressed model. We challenge the classical matrix factorization methods by proposing a novel, better-performing autoencoder-based framework. We perform a comprehensive ablation study of our approach, examining its different aspects over a diverse set of evaluation settings. Moreover, we show that enabling collaboration between modules across layers by compressing certain modules together positively impacts the final model performance. Experiments on various NLP tasks demonstrate that our approach significantly outperforms commonly used factorization-based offline compression methods.
HyperSound: Generating Implicit Neural Representations of Audio Signals with Hypernetworks
Szatkowski, Filip, Piczak, Karol J., Spurek, Przemysław, Tabor, Jacek, Trzciński, Tomasz
Implicit neural representations (INRs) are a rapidly growing research field, which provides alternative ways to represent multimedia signals. Recent applications of INRs include image super-resolution, compression of high-dimensional signals, or 3D rendering. However, these solutions usually focus on visual data, and adapting them to the audio domain is not trivial. Moreover, it requires a separately trained model for every data sample. To address this limitation, we propose HyperSound, a meta-learning method leveraging hypernetworks to produce INRs for audio signals unseen at training time. We show that our approach can reconstruct sound waves with quality comparable to other state-of-the-art models.
LIDL: Local Intrinsic Dimension Estimation Using Approximate Likelihood
Tempczyk, Piotr, Michaluk, Rafał, Garncarek, Łukasz, Spurek, Przemysław, Tabor, Jacek, Goliński, Adam
Most of the existing methods for estimating the local intrinsic dimension of a data distribution do not scale well to high-dimensional data. Many of them rely on a non-parametric nearest neighbors approach which suffers from the curse of dimensionality. We attempt to address that challenge by proposing a novel approach to the problem: Local Intrinsic Dimension estimation using approximate Likelihood (LIDL). Our method relies on an arbitrary density estimation method as its subroutine and hence tries to sidestep the dimensionality challenge by making use of the recent progress in parametric neural methods for likelihood estimation. We carefully investigate the empirical properties of the proposed method, compare them with our theoretical predictions, and show that LIDL yields competitive results on the standard benchmarks for this problem and that it scales to thousands of dimensions. What is more, we anticipate this approach to improve further with the continuing advances in the density estimation literature.
Bounding Evidence and Estimating Log-Likelihood in VAE
Struski, Łukasz, Mazur, Marcin, Batorski, Paweł, Spurek, Przemysław, Tabor, Jacek
Many crucial problems in deep learning and statistics are caused by a variational gap, i.e., a difference between evidence and evidence lower bound (ELBO). As a consequence, in the classical VAE model, we obtain only the lower bound on the log-likelihood since ELBO is used as a cost function, and therefore we cannot compare log-likelihood between models. In this paper, we present a general and effective upper bound of the variational gap, which allows us to efficiently estimate the true evidence. We provide an extensive theoretical study of the proposed approach. Moreover, we show that by applying our estimation, we can easily obtain lower and upper bounds for the log-likelihood of VAE models.
Interpretable Image Classification with Differentiable Prototypes Assignment
Rymarczyk, Dawid, Struski, Łukasz, Górszczak, Michał, Lewandowska, Koryna, Tabor, Jacek, Zieliński, Bartosz
We introduce ProtoPool, an interpretable image classification model with a pool of prototypes shared by the classes. The training is more straightforward than in the existing methods because it does not require the pruning stage. It is obtained by introducing a fully differentiable assignment of prototypes to particular classes. Moreover, we introduce a novel focal similarity function to focus the model on the rare foreground features. We show that ProtoPool obtains state-of-the-art accuracy on the CUB-200-2011 and the Stanford Cars datasets, substantially reducing the number of prototypes. We provide a theoretical analysis of the method and a user study to show that our prototypes are more distinctive than those obtained with competitive methods.
Relative Molecule Self-Attention Transformer
Maziarka, Łukasz, Majchrowski, Dawid, Danel, Tomasz, Gaiński, Piotr, Tabor, Jacek, Podolak, Igor, Morkisz, Paweł, Jastrzębski, Stanisław
Self-supervised learning holds promise to revolutionize molecule property prediction - a central task to drug discovery and many more industries - by enabling data efficient learning from scarce experimental data. Despite significant progress, non-pretrained methods can be still competitive in certain settings. We reason that architecture might be a key bottleneck. In particular, enriching the backbone architecture with domain-specific inductive biases has been key for the success of self-supervised learning in other domains. In this spirit, we methodologically explore the design space of the self-attention mechanism tailored to molecular data. We identify a novel variant of self-attention adapted to processing molecules, inspired by the relative self-attention layer, which involves fusing embedded graph and distance relationships between atoms. Our main contribution is Relative Molecule Attention Transformer (R-MAT): a novel Transformer-based model based on the developed self-attention layer that achieves state-of-the-art or very competitive results across a~wide range of molecule property prediction tasks.