Goto

Collaborating Authors

 Tabibian, Behzad


Optimal Decision Making Under Strategic Behavior

arXiv.org Machine Learning

We are witnessing an increasing use of data-driven predictive models to inform decisions. As decisions have implications for individuals and society, there is increasing pressure on decision makers to be transparent about their decision policies, models, and the features they use. At the same time, individuals may use knowledge, gained by transparency, to invest effort strategically in order to maximize their chances of receiving a beneficial decision. In this paper, our goal is to find decision policies that are optimal in terms of utility in such a strategic setting. To this end, we first use the theory of optimal transport to characterize how strategic investment of effort by individuals leads to a change in the feature distribution at a population level. Then, we show that, in contrast with the non-strategic setting, optimal decision policies are stochastic, and we cannot expect to find them in polynomial time. Finally, we derive an efficient greedy algorithm that is guaranteed to find locally optimal decision policies in polynomial time. Experiments on synthetic and real lending data illustrate our theoretical findings and show that the decision policies found by our greedy algorithm achieve higher utility than deterministic threshold rules, which are optimal policies in a non-strategic setting.


Consequential Ranking Algorithms and Long-term Welfare

arXiv.org Machine Learning

Ranking models are typically designed to provide rankings that optimize some measure of immediate utility to the users. As a result, they have been unable to anticipate an increasing number of undesirable long-term consequences of their proposed rankings, from fueling the spread of misinformation and increasing polarization to degrading social discourse. Can we design ranking models that understand the consequences of their proposed rankings and, more importantly, are able to avoid the undesirable ones? In this paper, we first introduce a joint representation of rankings and user dynamics using Markov decision processes. Then, we show that this representation greatly simplifies the construction of consequential ranking models that trade off the immediate utility and the long-term welfare. In particular, we can obtain optimal consequential rankings just by applying weighted sampling on the rankings provided by models that maximize measures of immediate utility. However, in practice, such a strategy may be inefficient and impractical, specially in high dimensional scenarios. To overcome this, we introduce an efficient gradient-based algorithm to learn parameterized consequential ranking models that effectively approximate optimal ones. We showcase our methodology using synthetic and real data gathered from Reddit and show that ranking models derived using our methodology provide ranks that may mitigate the spread of misinformation and improve the civility of online discussions.


Leveraging the Crowd to Detect and Reduce the Spread of Fake News and Misinformation

arXiv.org Machine Learning

Online social networking sites are experimenting with the following crowd-powered procedure to reduce the spread of fake news and misinformation: whenever a user is exposed to a story through her feed, she can flag the story as misinformation and, if the story receives enough flags, it is sent to a trusted third party for fact checking. If this party identifies the story as misinformation, it is marked as disputed. However, given the uncertain number of exposures, the high cost of fact checking, and the trade-off between flags and exposures, the above mentioned procedure requires careful reasoning and smart algorithms which, to the best of our knowledge, do not exist to date. In this paper, we first introduce a flexible representation of the above procedure using the framework of marked temporal point processes. Then, we develop a scalable online algorithm, Curb, to select which stories to send for fact checking and when to do so to efficiently reduce the spread of misinformation with provable guarantees. In doing so, we need to solve a novel stochastic optimal control problem for stochastic differential equations with jumps, which is of independent interest. Experiments on two real-world datasets gathered from Twitter and Weibo show that our algorithm may be able to effectively reduce the spread of fake news and misinformation.


Design and Analysis of the NIPS 2016 Review Process

arXiv.org Machine Learning

Neural Information Processing Systems (NIPS) is a top-tier annual conference in machine learning. The 2016 edition of the conference comprised more than 2,400 paper submissions, 3,000 reviewers, and 8,000 attendees, representing a growth of nearly 40% in terms of submissions, 96% in terms of reviewers, and over 100% in terms of attendees as compared to the previous year. In this report, we analyze several aspects of the data collected during the review process, including an experiment investigating the efficacy of collecting ordinal rankings from reviewers (vs. usual scores aka cardinal rankings). Our goal is to check the soundness of the review process we implemented and, in going so, provide insights that may be useful in the design of the review process of subsequent conferences. We introduce a number of metrics that could be used for monitoring improvements when new ideas are introduced.


Distilling Information Reliability and Source Trustworthiness from Digital Traces

arXiv.org Machine Learning

Online knowledge repositories typically rely on their users or dedicated editors to evaluate the reliability of their content. These evaluations can be viewed as noisy measurements of both information reliability and information source trustworthiness. Can we leverage these noisy evaluations, often biased, to distill a robust, unbiased and interpretable measure of both notions? In this paper, we argue that the temporal traces left by these noisy evaluations give cues on the reliability of the information and the trustworthiness of the sources. Then, we propose a temporal point process modeling framework that links these temporal traces to robust, unbiased and interpretable notions of information reliability and source trustworthiness. Furthermore, we develop an efficient convex optimization procedure to learn the parameters of the model from historical traces. Experiments on real-world data gathered from Wikipedia and Stack Overflow show that our modeling framework accurately predicts evaluation events, provides an interpretable measure of information reliability and source trustworthiness, and yields interesting insights about real-world events.