Tětková, Lenka
How Redundant Is the Transformer Stack in Speech Representation Models?
Dorszewski, Teresa, Jacobsen, Albert Kjøller, Tětková, Lenka, Hansen, Lars Kai
Self-supervised speech representation models, particularly those leveraging transformer architectures, have demonstrated remarkable performance across various tasks such as speech recognition, speaker identification, and emotion detection. Recent studies on transformer models revealed a high redundancy between layers and the potential for significant pruning, which we will investigate here for transformer-based speech representation models. We perform a detailed analysis of layer similarity in speech representation models using three similarity metrics: cosine similarity, centered kernel alignment, and mutual nearest-neighbor alignment. Our findings reveal a block-like structure of high similarity, suggesting two main processing steps and significant redundancy of layers. We demonstrate the effectiveness of pruning transformer-based speech representation models without the need for post-training, achieving up to 40% reduction in transformer layers while maintaining over 95% of the model's predictive capacity. Furthermore, we employ a knowledge distillation method to substitute the entire transformer stack with mimicking layers, reducing the network size 95-98% and the inference time by up to 94%. This substantial decrease in computational load occurs without considerable performance loss, suggesting that the transformer stack is almost completely redundant for downstream applications of speech representation models.
Knowledge graphs for empirical concept retrieval
Tětková, Lenka, Scheidt, Teresa Karen, Fogh, Maria Mandrup, Jørgensen, Ellen Marie Gaunby, Nielsen, Finn Årup, Hansen, Lars Kai
Concept-based explainable AI is promising as a tool to improve the understanding of complex models at the premises of a given user, viz.\ as a tool for personalized explainability. An important class of concept-based explainability methods is constructed with empirically defined concepts, indirectly defined through a set of positive and negative examples, as in the TCAV approach (Kim et al., 2018). While it is appealing to the user to avoid formal definitions of concepts and their operationalization, it can be challenging to establish relevant concept datasets. Here, we address this challenge using general knowledge graphs (such as, e.g., Wikidata or WordNet) for comprehensive concept definition and present a workflow for user-driven data collection in both text and image domains. The concepts derived from knowledge graphs are defined interactively, providing an opportunity for personalization and ensuring that the concepts reflect the user's intentions. We test the retrieved concept datasets on two concept-based explainability methods, namely concept activation vectors (CAVs) and concept activation regions (CARs) (Crabbe and van der Schaar, 2022). We show that CAVs and CARs based on these empirical concept datasets provide robust and accurate explanations. Importantly, we also find good alignment between the models' representations of concepts and the structure of knowledge graphs, i.e., human representations. This supports our conclusion that knowledge graph-based concepts are relevant for XAI.
On convex decision regions in deep network representations
Tětková, Lenka, Brüsch, Thea, Scheidt, Teresa Karen, Mager, Fabian Martin, Aagaard, Rasmus Ørtoft, Foldager, Jonathan, Alstrøm, Tommy Sonne, Hansen, Lars Kai
Current work on human-machine alignment aims at understanding machine-learned latent spaces and their correspondence to human representations. G{\"a}rdenfors' conceptual spaces is a prominent framework for understanding human representations. Convexity of object regions in conceptual spaces is argued to promote generalizability, few-shot learning, and interpersonal alignment. Based on these insights, we investigate the notion of convexity of concept regions in machine-learned latent spaces. We develop a set of tools for measuring convexity in sampled data and evaluate emergent convexity in layered representations of state-of-the-art deep networks. We show that convexity is robust to basic re-parametrization and, hence, meaningful as a quality of machine-learned latent spaces. We find that approximate convexity is pervasive in neural representations in multiple application domains, including models of images, audio, human activity, text, and medical images. Generally, we observe that fine-tuning increases the convexity of label regions. We find evidence that pretraining convexity of class label regions predicts subsequent fine-tuning performance.
Robustness of Visual Explanations to Common Data Augmentation
Tětková, Lenka, Hansen, Lars Kai
As the use of deep neural networks continues to grow, understanding their behaviour has become more crucial than ever. Post-hoc explainability methods are a potential solution, but their reliability is being called into question. Our research investigates the response of post-hoc visual explanations to naturally occurring transformations, often referred to as augmentations. We anticipate explanations to be invariant under certain transformations, such as changes to the colour map while responding in an equivariant manner to transformations like translation, object scaling, and rotation. We have found remarkable differences in robustness depending on the type of transformation, with some explainability methods (such as LRP composites and Guided Backprop) being more stable than others. We also explore the role of training with data augmentation. We provide evidence that explanations are typically less robust to augmentation than classification performance, regardless of whether data augmentation is used in training or not.