Goto

Collaborating Authors

 Türkmen, Ali Caner


A Bayesian Choice Model for Eliminating Feedback Loops

arXiv.org Machine Learning

Self-reinforcing feedback loops in personalization systems are typically caused by users choosing from a limited set of alternatives presented systematically based on previous choices. We propose a Bayesian choice model built on Luce axioms that explicitly accounts for users' limited exposure to alternatives. Our model is fair---it does not impose negative bias towards unpresented alternatives, and practical---preference estimates are accurately inferred upon observing a small number of interactions. It also allows efficient sampling, leading to a straightforward online presentation mechanism based on Thompson sampling. Our approach achieves low regret in learning to present upon exploration of only a small fraction of possible presentations. The proposed structure can be reused as a building block in interactive systems, e.g., recommender systems, free of feedback loops.


GluonTS: Probabilistic Time Series Models in Python

arXiv.org Machine Learning

We introduce Gluon Time Series (GluonTS, available at https://gluon-ts.mxnet.io), a library for deep-learning-based time series modeling. GluonTS simplifies the development of and experimentation with time series models for common tasks such as forecasting or anomaly detection. It provides all necessary components and tools that scientists need for quickly building new models, for efficiently running and analyzing experiments and for evaluating model accuracy.


A Review of Nonnegative Matrix Factorization Methods for Clustering

arXiv.org Machine Learning

Nonnegative Matrix Factorization (NMF) was first introduced as a low-rank matrix approximation technique, and has enjoyed a wide area of applications. Although NMF does not seem related to the clustering problem at first, it was shown that they are closely linked. In this report, we provide a gentle introduction to clustering and NMF before reviewing the theoretical relationship between them. We then explore several NMF variants, namely Sparse NMF, Projective NMF, Nonnegative Spectral Clustering and Cluster-NMF, along with their clustering interpretations.