Goto

Collaborating Authors

 Szolovits, Peter


Right, No Matter Why: AI Fact-checking and AI Authority in Health-related Inquiry Settings

arXiv.org Artificial Intelligence

Previous research on expert advice-taking shows that humans exhibit two contradictory behaviors: on the one hand, people tend to overvalue their own opinions undervaluing the expert opinion, and on the other, people often defer to other people's advice even if the advice itself is rather obviously wrong. In our study, we conduct an exploratory evaluation of users' AI-advice accepting behavior when evaluating the truthfulness of a health-related statement in different "advice quality" settings. We find that even feedback that is confined to just stating that "the AI thinks that the statement is false/true" results in more than half of people moving their statement veracity assessment towards the AI suggestion. The different types of advice given influence the acceptance rates, but the sheer effect of getting a suggestion is often bigger than the suggestion-type effect.


Do We Still Need Clinical Language Models?

arXiv.org Artificial Intelligence

Although recent advances in scaling large language models (LLMs) have resulted in improvements on many NLP tasks, it remains unclear whether these models trained primarily with general web text are the right tool in highly specialized, safety critical domains such as clinical text. Recent results have suggested that LLMs encode a surprising amount of medical knowledge. This raises an important question regarding the utility of smaller domain-specific language models. With the success of general-domain LLMs, is there still a need for specialized clinical models? To investigate this question, we conduct an extensive empirical analysis of 12 language models, ranging from 220M to 175B parameters, measuring their performance on 3 different clinical tasks that test their ability to parse and reason over electronic health records. As part of our experiments, we train T5-Base and T5-Large models from scratch on clinical notes from MIMIC III and IV to directly investigate the efficiency of clinical tokens. We show that relatively small specialized clinical models substantially outperform all in-context learning approaches, even when finetuned on limited annotated data. Further, we find that pretraining on clinical tokens allows for smaller, more parameter-efficient models that either match or outperform much larger language models trained on general text. We release the code and the models used under the PhysioNet Credentialed Health Data license and data use agreement.


Using Machine Learning to Develop Smart Reflex Testing Protocols

arXiv.org Artificial Intelligence

Objective: Reflex testing protocols allow clinical laboratories to perform second line diagnostic tests on existing specimens based on the results of initially ordered tests. Reflex testing can support optimal clinical laboratory test ordering and diagnosis. In current clinical practice, reflex testing typically relies on simple "if-then" rules; however, this limits their scope since most test ordering decisions involve more complexity than a simple rule will allow. Here, using the analyte ferritin as an example, we propose an alternative machine learning-based approach to "smart" reflex testing with a wider scope and greater impact than traditional rule-based approaches. Methods: Using patient data, we developed a machine learning model to predict whether a patient getting CBC testing will also have ferritin testing ordered, consider applications of this model to "smart" reflex testing, and evaluate the model by comparing its performance to possible rule-based approaches. Results: Our underlying machine learning models performed moderately well in predicting ferritin test ordering and demonstrated greater suitability to reflex testing than rule-based approaches. Using chart review, we demonstrate that our model may improve ferritin test ordering. Finally, as a secondary goal, we demonstrate that ferritin test results are missing not at random (MNAR), a finding with implications for unbiased imputation of missing test results. Conclusions: Machine learning may provide a foundation for new types of reflex testing with enhanced benefits for clinical diagnosis and laboratory utilization management.


Structure Inducing Pre-Training

arXiv.org Artificial Intelligence

Language model pre-training and derived methods are incredibly impactful in machine learning. However, there remains considerable uncertainty on exactly why pre-training helps improve performance for fine-tuning tasks. This is especially true when attempting to adapt language-model pre-training to domains outside of natural language. Here, we analyze this problem by exploring how existing pre-training methods impose relational structure in their induced per-sample latent spaces -- i.e., what constraints do pre-training methods impose on the distance or geometry between the pre-trained embeddings of two samples $\vec x_i$ and $\vec x_j$. Through a comprehensive review of existing pre-training methods, we find that this question remains open. This is true despite theoretical analyses demonstrating the importance of understanding this form of induced structure. Based on this review, we introduce a descriptive framework for pre-training that allows for a granular, comprehensive understanding of how relational structure can be induced. We present a theoretical analysis of this framework from first principles and establish a connection between the relational inductive bias of pre-training and fine-tuning performance. We also show how to use the framework to define new pre-training methods. We build upon these findings with empirical studies on benchmarks spanning 3 data modalities and ten fine-tuning tasks. These experiments validate our theoretical analyses, inform the design of novel pre-training methods, and establish consistent improvements over a compelling suite of baseline methods.


Adversarial Contrastive Pre-training for Protein Sequences

arXiv.org Artificial Intelligence

Recent developments in Natural Language Processing (NLP) demonstrate that large-scale, self-supervised pre-training can be extremely beneficial for downstream tasks. These ideas have been adapted to other domains, including the analysis of the amino acid sequences of proteins. However, to date most attempts on protein sequences rely on direct masked language model style pre-training. In this work, we design a new, adversarial pre-training method for proteins, extending and specializing similar advances in NLP. We show compelling results in comparison to traditional MLM pre-training, though further development is needed to ensure the gains are worth the significant computational cost.


What Disease does this Patient Have? A Large-scale Open Domain Question Answering Dataset from Medical Exams

arXiv.org Artificial Intelligence

Open domain question answering (OpenQA) tasks have been recently attracting more and more attention from the natural language processing (NLP) community. In this work, we present the first free-form multiple-choice OpenQA dataset for solving medical problems, MedQA, collected from the professional medical board exams. It covers three languages: English, simplified Chinese, and traditional Chinese, and contains 12,723, 34,251, and 14,123 questions for the three languages, respectively. We implement both rule-based and popular neural methods by sequentially combining a document retriever and a machine comprehension model. Through experiments, we find that even the current best method can only achieve 36.7\%, 42.0\%, and 70.1\% of test accuracy on the English, traditional Chinese, and simplified Chinese questions, respectively. We expect MedQA to present great challenges to existing OpenQA systems and hope that it can serve as a platform to promote much stronger OpenQA models from the NLP community in the future.


A Comprehensive Evaluation of Multi-task Learning and Multi-task Pre-training on EHR Time-series Data

arXiv.org Machine Learning

Multi-task learning (MTL) is a machine learning technique aiming to improve model performance by leveraging information across many tasks. It has been used extensively on various data modalities, including electronic health record (EHR) data. However, despite significant use on EHR data, there has been little systematic investigation of the utility of MTL across the diverse set of possible tasks and training schemes of interest in healthcare. In this work, we examine MTL across a battery of tasks on EHR time-series data. We find that while MTL does suffer from common negative transfer, we can realize significant gains via MTL pre-training combined with single-task fine-tuning. We demonstrate that these gains can be achieved in a task-independent manner and offer not only minor improvements under traditional learning, but also notable gains in a few-shot learning context, thereby suggesting this could be a scalable vehicle to offer improved performance in important healthcare contexts.


TransINT: Embedding Implication Rules in Knowledge Graphs with Isomorphic Intersections of Linear Subspaces

arXiv.org Machine Learning

Knowledge Graphs (KG), composed of entities and relations, provide a structured representation of knowledge. For easy access to statistical approaches on relational data, multiple methods to embed a KG into f(KG) $\in$ R^d have been introduced. We propose TransINT, a novel and interpretable KG embedding method that isomorphically preserves the implication ordering among relations in the embedding space. Given implication rules, TransINT maps set of entities (tied by a relation) to continuous sets of vectors that are inclusion-ordered isomorphically to relation implications. With a novel parameter sharing scheme, TransINT enables automatic training on missing but implied facts without rule grounding. On a benchmark dataset, we outperform the best existing state-of-the-art rule integration embedding methods with significant margins in link Prediction and triple Classification. The angles between the continuous sets embedded by TransINT provide an interpretable way to mine semantic relatedness and implication rules among relations.


CheXpert++: Approximating the CheXpert labeler for Speed,Differentiability, and Probabilistic Output

arXiv.org Machine Learning

It is often infeasible or impossible to obtain ground truth labels for medical data. To circumvent this, one may build rule-based or other expert-knowledge driven labelers to ingest data and yield silver labels absent any ground-truth training data. One popular such labeler is CheXpert (Irvin et al., 2019), a labeler that produces diagnostic labels for chest X-ray radiology reports. CheXpert is very useful, but is relatively computationally slow, especially when integrated with end-to-end neural pipelines, is non-differentiable so can't be used in any applications that require gradients to flow through the labeler, and does not yield probabilistic outputs, which limits our ability to improve the quality of the silver labeler through techniques such as active learning. In this work, we solve all three of these problems with CheXpert, a BERTbased, highfidelity approximation to CheXpert. CheXpert achieves 99.81% parity with CheXpert, which means it can be reliably used as a drop-in replacement for CheXpert, all while being significantly faster, fully differentiable, and probabilistic in output. Error analysis of CheXpert also demonstrates that CheXpert has a tendency to actually correct errors in the CheXpert labels, with CheXpert labels being more often preferred by a clinician over CheXpert labels (when they disagree) on all but one disease task. To further demonstrate the utility of these advantages in this model, we conduct a proof-of-concept active learning study, demonstrating we can improve accuracy on an expert labeled random subset of report sentences by approximately 8% over raw, unaltered CheXpert by using one-iteration of active-learning inspired retraining. These findings suggest that simple techniques in co-learning and active learning can yield high-quality labelers under minimal, and controllable human labeling demands.


Expert-Supervised Reinforcement Learning for Offline Policy Learning and Evaluation

arXiv.org Artificial Intelligence

Offline Reinforcement Learning (RL) is a promising approach for learning optimal policies in environments where direct exploration is expensive or unfeasible. However, the adoption of such policies in practice is often challenging, as they are hard to interpret within the application context, and lack measures of uncertainty for the learned policy value and its decisions. To overcome these issues, we propose an Expert-Supervised RL (ESRL) framework which uses uncertainty quantification for offline policy learning. In particular, we have three contributions: 1) the method can learn safe and optimal policies through hypothesis testing, 2) ESRL allows for different levels of risk aversion within the application context, and finally, 3) we propose a way to interpret ESRL's policy at every state through posterior distributions, and use this framework to compute off-policy value function posteriors. We provide theoretical guarantees for our estimators and regret bounds consistent with Posterior Sampling for RL (PSRL) that account for any risk aversion threshold. We further propose an offline version of PSRL as a special case of ESRL.