Goto

Collaborating Authors

 Szepesvári, Csaba


When Is Partially Observable Reinforcement Learning Not Scary?

arXiv.org Machine Learning

A wide range of modern artificial intelligence challenges ca n be cast as Reinforcement Learning (RL) problems under partial observability, in which agents learn to make a sequence of decisions despite lacking complete information about the underlying state of system. For example, in robotics the agent has to cope with noisy sensors, occlusions, and unk nown dynamics ( Akkaya et al., 2019), while in imperfect information games the player makes only l ocal observations ( Vinyals et al., 2019; Brown and Sandholm, 2019). Further applications of partially observable RL include autonomous driving ( Levinson et al., 2011), resource allocation ( Bower and Gilbert, 2005), medical diagnostic systems ( Hauskrecht and Fraser, 2000), recommendation ( Li et al., 2010), business management ( De Brito and Van Der Laan, 2009), etc. As such, learning and acting under partial observabi lity has been an important topic in operation research, control, and machine learning. Because of the non-Markovian nature of the observations, le arning and planning in partially observable environments requires an agent to maintain memory and possibly reason about beliefs over the states, all while exploring to collect information about the environment. As such, partial observability can significantly complicate learni ng and planning under uncertainty. While practical RL systems have succeeded in a set of partially obs ervable problems including Poker ( Brown and Sandholm, 2019), Starcraft ( Vinyals et al., 2019) and certain robotic tasks ( Cassandra et al., The author emails are {qinghual, alan.chung,


A Free Lunch from the Noise: Provable and Practical Exploration for Representation Learning

arXiv.org Artificial Intelligence

Reinforcement learning (RL) dedicates to solve the sequential decision making problem, where an agent is interacting with an unknown environment to find the best policy that maximizes the expected cumulative rewards (Sutton & Barto, 2018). It is known that the tabular algorithms direct controlling over the original state and action achieve the minimax-optimal regret depending on the cardinality of the state and action space (Jaksch et al., 2010; Osband & Van Roy, 2016; Azar et al., 2017; Jin et al., 2018). However, these algorithms become intractable for the real-world problems with an enormous number of states, due to the curse of dimensionality. Learning with function approximation upon good representation is a natural idea to tackle the curse and serving as the key for the success of deep learning (Bengio et al., 2013). In fact, representation learning lies at the heart of the empirical successes of deep RL in video games (Mnih et al., 2013), robotics (Levine et al., 2016), Go (Silver et al., 2017), dialogue systems (Jiang et al., 2021) to name a few. Meanwhile, the importance and benefits of the representation in RL is rigorously justified (Jin et al.,


TensorPlan and the Few Actions Lower Bound for Planning in MDPs under Linear Realizability of Optimal Value Functions

arXiv.org Machine Learning

We consider the minimax query complexity of online planning with a generative model in fixed-horizon Markov decision processes (MDPs) with linear function approximation. Following recent works, we consider broad classes of problems where either (i) the optimal value function $v^\star$ or (ii) the optimal action-value function $q^\star$ lie in the linear span of some features; or (iii) both $v^\star$ and $q^\star$ lie in the linear span when restricted to the states reachable from the starting state. Recently, Weisz et al. (2021b) showed that under (ii) the minimax query complexity of any planning algorithm is at least exponential in the horizon $H$ or in the feature dimension $d$ when the size $A$ of the action set can be chosen to be exponential in $\min(d,H)$. On the other hand, for the setting (i), Weisz et al. (2021a) introduced TensorPlan, a planner whose query cost is polynomial in all relevant quantities when the number of actions is fixed. Among other things, these two works left open the question whether polynomial query complexity is possible when $A$ is subexponential in $min(d,H)$. In this paper we answer this question in the negative: we show that an exponentially large lower bound holds when $A=\Omega(\min(d^{1/4},H^{1/2}))$, under either (i), (ii) or (iii). In particular, this implies a perhaps surprising exponential separation of query complexity compared to the work of Du et al. (2021) who prove a polynomial upper bound when (iii) holds for all states. Furthermore, we show that the upper bound of TensorPlan can be extended to hold under (iii) and, for MDPs with deterministic transitions and stochastic rewards, also under (ii).


Efficient Local Planning with Linear Function Approximation

arXiv.org Machine Learning

We study query and computationally efficient planning algorithms with linear function approximation and a simulator. We assume that the agent only has local access to the simulator, meaning that the agent can only query the simulator at states that have been visited before. This setting is more practical than many prior works on reinforcement learning with a generative model. We propose an algorithm named confident Monte Carlo least square policy iteration (Confident MC-LSPI) for this setting. Under the assumption that the Q-functions of all deterministic policies are linear in known features of the state-action pairs, we show that our algorithm has polynomial query and computational complexities in the dimension of the features, the effective planning horizon and the targeted sub-optimality, while these complexities are independent of the size of the state space. One technical contribution of our work is the introduction of a novel proof technique that makes use of a virtual policy iteration algorithm. We use this method to leverage existing results on $\ell_\infty$-bounded approximate policy iteration to show that our algorithm can learn the optimal policy for the given initial state even only with local access to the simulator. We believe that this technique can be extended to broader settings beyond this work.


On the Role of Optimization in Double Descent: A Least Squares Study

arXiv.org Machine Learning

Empirically it has been observed that the performance of deep neural networks steadily improves as we increase model size, contradicting the classical view on overfitting and generalization. Recently, the double descent phenomena has been proposed to reconcile this observation with theory, suggesting that the test error has a second descent when the model becomes sufficiently overparameterized, as the model size itself acts as an implicit regularizer. In this paper we add to the growing body of work in this space, providing a careful study of learning dynamics as a function of model size for the least squares scenario. We show an excess risk bound for the gradient descent solution of the least squares objective. The bound depends on the smallest non-zero eigenvalue of the covariance matrix of the input features, via a functional form that has the double descent behavior. This gives a new perspective on the double descent curves reported in the literature. Our analysis of the excess risk allows to decouple the effect of optimization and generalization error. In particular, we find that in case of noiseless regression, double descent is explained solely by optimization-related quantities, which was missed in studies focusing on the Moore-Penrose pseudoinverse solution. We believe that our derivation provides an alternative view compared to existing work, shedding some light on a possible cause of this phenomena, at least in the considered least squares setting. We empirically explore if our predictions hold for neural networks, in particular whether the covariance of intermediary hidden activations has a similar behavior as the one predicted by our derivations.


Optimization Issues in KL-Constrained Approximate Policy Iteration

arXiv.org Machine Learning

Many reinforcement learning algorithms can be seen as versions of approximate policy iteration (API). While standard API often performs poorly, it has been shown that learning can be stabilized by regularizing each policy update by the KL-divergence to the previous policy. Popular practical algorithms such as TRPO, MPO, and VMPO replace regularization by a constraint on KL-divergence of consecutive policies, arguing that this is easier to implement and tune. In this work, we study this implementation choice in more detail. We compare the use of KL divergence as a constraint vs. as a regularizer, and point out several optimization issues with the widely-used constrained approach. We show that the constrained algorithm is not guaranteed to converge even on simple problem instances where the constrained problem can be solved exactly, and in fact incurs linear expected regret. With approximate implementation using softmax policies, we show that regularization can improve the optimization landscape of the original objective. We demonstrate these issues empirically on several bandit and RL environments.


Bootstrapping Statistical Inference for Off-Policy Evaluation

arXiv.org Machine Learning

Bootstrapping provides a flexible and effective approach for assessing the quality of batch reinforcement learning, yet its theoretical property is less understood. In this paper, we study the use of bootstrapping in off-policy evaluation (OPE), and in particular, we focus on the fitted Q-evaluation (FQE) that is known to be minimax-optimal in the tabular and linear-model cases. We propose a bootstrapping FQE method for inferring the distribution of the policy evaluation error and show that this method is asymptotically efficient and distributionally consistent for off-policy statistical inference. To overcome the computation limit of bootstrapping, we further adapt a subsampling procedure that improves the runtime by an order of magnitude. We numerically evaluate the bootrapping method in classical RL environments for confidence interval estimation, estimating the variance of off-policy evaluator, and estimating the correlation between multiple off-policy evaluators.


On Query-efficient Planning in MDPs under Linear Realizability of the Optimal State-value Function

arXiv.org Artificial Intelligence

We consider the problem of local planning in fixed-horizon Markov Decision Processes (MDPs) with a generative model under the assumption that the optimal value function lies in the span of a feature map that is accessible through the generative model. As opposed to previous work where linear realizability of all policies was assumed, we consider the significantly relaxed assumption of a single linearly realizable (deterministic) policy. A recent lower bound established that the related problem when the action-value function of the optimal policy is linearly realizable requires an exponential number of queries, either in H (the horizon of the MDP) or d (the dimension of the feature mapping). Their construction crucially relies on having an exponentially large action set. In contrast, in this work, we establish that poly$(H, d)$ learning is possible (with state value function realizability) whenever the action set is small (i.e. O(1)). In particular, we present the TensorPlan algorithm which uses poly$((dH/\delta)^A)$ queries to find a $\delta$-optimal policy relative to any deterministic policy for which the value function is linearly realizable with a parameter from a fixed radius ball around zero. This is the first algorithm to give a polynomial query complexity guarantee using only linear-realizability of a single competing value function. Whether the computation cost is similarly bounded remains an interesting open question. The upper bound is complemented by a lower bound which proves that in the infinite-horizon episodic setting, planners that achieve constant suboptimality need exponentially many queries, either in the dimension or the number of actions.


Asymptotically Optimal Information-Directed Sampling

arXiv.org Machine Learning

We introduce a computationally efficient algorithm for finite stochastic linear bandits. The approach is based on the frequentist information-directed sampling (IDS) framework, with an information gain potential that is derived directly from the asymptotic regret lower bound. We establish frequentist regret bounds, which show that the proposed algorithm is both asymptotically optimal and worst-case rate optimal in finite time. Our analysis sheds light on how IDS trades off regret and information to incrementally solve the semi-infinite concave program that defines the optimal asymptotic regret. Along the way, we uncover interesting connections towards a recently proposed two-player game approach and the Bayesian IDS algorithm.


Sparse Feature Selection Makes Batch Reinforcement Learning More Sample Efficient

arXiv.org Machine Learning

This paper provides a statistical analysis of high-dimensional batch Reinforcement Learning (RL) using sparse linear function approximation. When there is a large number of candidate features, our result sheds light on the fact that sparsity-aware methods can make batch RL more sample efficient. We first consider the off-policy policy evaluation problem. To evaluate a new target policy, we analyze a Lasso fitted Q-evaluation method and establish a finite-sample error bound that has no polynomial dependence on the ambient dimension. To reduce the Lasso bias, we further propose a post model-selection estimator that applies fitted Q-evaluation to the features selected via group Lasso. Under an additional signal strength assumption, we derive a sharper instance-dependent error bound that depends on a divergence function measuring the distribution mismatch between the data distribution and occupancy measure of the target policy. Further, we study the Lasso fitted Q-iteration for batch policy optimization and establish a finite-sample error bound depending on the ratio between the number of relevant features and restricted minimal eigenvalue of the data's covariance. In the end, we complement the results with minimax lower bounds for batch-data policy evaluation/optimization that nearly match our upper bounds. The results suggest that having well-conditioned data is crucial for sparse batch policy learning.