Goto

Collaborating Authors

 Szepesvári, Csaba


Exploration via linearly perturbed loss minimisation

arXiv.org Machine Learning

We introduce exploration via linear loss perturbations (EVILL), a randomised exploration method for structured stochastic bandit problems that works by solving for the minimiser of a linearly perturbed regularised negative log-likelihood function. We show that, for the case of generalised linear bandits, EVILL reduces to perturbed history exploration (PHE), a method where exploration is done by training on randomly perturbed rewards. In doing so, we provide a simple and clean explanation of when and why random reward perturbations give rise to good bandit algorithms. With the data-dependent perturbations we propose, not present in previous PHE-type methods, EVILL is shown to match the performance of Thompson-sampling-style parameter-perturbation methods, both in theory and in practice. Moreover, we show an example outside of generalised linear bandits where PHE leads to inconsistent estimates, and thus linear regret, while EVILL remains performant. Like PHE, EVILL can be implemented in just a few lines of code.


Stochastic Gradient Descent for Gaussian Processes Done Right

arXiv.org Machine Learning

We study the optimisation problem associated with Gaussian process regression using squared loss. The most common approach to this problem is to apply an exact solver, such as conjugate gradient descent, either directly, or to a reducedorder version of the problem. Recently, driven by successes in deep learning, stochastic gradient descent has gained traction as an alternative. In this paper, we show that when done right--by which we mean using specific insights from the optimisation and kernel communities--this approach is highly effective. We thus introduce a particular stochastic dual gradient descent algorithm, that may be implemented with a few lines of code using any deep learning framework. We explain our design decisions by illustrating their advantage against alternatives with ablation studies and show that the new method is highly competitive. Our evaluations on standard regression benchmarks and a Bayesian optimisation task set our approach apart from preconditioned conjugate gradients, variational Gaussian process approximations, and a previous version of stochastic gradient descent for Gaussian processes. Gaussian processes are a probabilistic framework for learning unknown functions. They are the de facto standard model of choice in areas like Bayesian optimisation, where uncertainty-aware decision making is required to gather data in an efficient manner.


Learning Lipschitz Functions by GD-trained Shallow Overparameterized ReLU Neural Networks

arXiv.org Artificial Intelligence

We explore the ability of overparameterized shallow ReLU neural networks to learn Lipschitz, nondifferentiable, bounded functions with additive noise when trained by Gradient Descent (GD). To avoid the problem that in the presence of noise, neural networks trained to nearly zero training error are inconsistent in this class, we focus on the early-stopped GD which allows us to show consistency and optimal rates. In particular, we explore this problem from the viewpoint of the Neural Tangent Kernel (NTK) approximation of a GD-trained finite-width neural network. We show that whenever some early stopping rule is guaranteed to give an optimal rate (of excess risk) on the Hilbert space of the kernel induced by the ReLU activation function, the same rule can be used to achieve minimax optimal rate for learning on the class of considered Lipschitz functions by neural networks. We discuss several data-free and data-dependent practically appealing stopping rules that yield optimal rates.


Exponential Hardness of Reinforcement Learning with Linear Function Approximation

arXiv.org Artificial Intelligence

A fundamental question in reinforcement learning theory is: suppose the optimal value functions are linear in given features, can we learn them efficiently? This problem's counterpart in supervised learning, linear regression, can be solved both statistically and computationally efficiently. Therefore, it was quite surprising when a recent work \cite{kane2022computational} showed a computational-statistical gap for linear reinforcement learning: even though there are polynomial sample-complexity algorithms, unless NP = RP, there are no polynomial time algorithms for this setting. In this work, we build on their result to show a computational lower bound, which is exponential in feature dimension and horizon, for linear reinforcement learning under the Randomized Exponential Time Hypothesis. To prove this we build a round-based game where in each round the learner is searching for an unknown vector in a unit hypercube. The rewards in this game are chosen such that if the learner achieves large reward, then the learner's actions can be used to simulate solving a variant of 3-SAT, where (a) each variable shows up in a bounded number of clauses (b) if an instance has no solutions then it also has no solutions that satisfy more than (1-$\epsilon$)-fraction of clauses. We use standard reductions to show this 3-SAT variant is approximately as hard as 3-SAT. Finally, we also show a lower bound optimized for horizon dependence that almost matches the best known upper bound of $\exp(\sqrt{H})$.


Efficient Planning in Combinatorial Action Spaces with Applications to Cooperative Multi-Agent Reinforcement Learning

arXiv.org Artificial Intelligence

A practical challenge in reinforcement learning are combinatorial action spaces that make planning computationally demanding. For example, in cooperative multi-agent reinforcement learning, a potentially large number of agents jointly optimize a global reward function, which leads to a combinatorial blow-up in the action space by the number of agents. As a minimal requirement, we assume access to an argmax oracle that allows to efficiently compute the greedy policy for any Q-function in the model class. Building on recent work in planning with local access to a simulator and linear function approximation, we propose efficient algorithms for this setting that lead to polynomial compute and query complexity in all relevant problem parameters. For the special case where the feature decomposition is additive, we further improve the bounds and extend the results to the kernelized setting with an efficient algorithm.


Revisiting Simple Regret: Fast Rates for Returning a Good Arm

arXiv.org Artificial Intelligence

Simple regret is a natural and parameter-free performance criterion for pure exploration in multi-armed bandits yet is less popular than the probability of missing the best arm or an $\epsilon$-good arm, perhaps due to lack of easy ways to characterize it. In this paper, we make significant progress on minimizing simple regret in both data-rich ($T\ge n$) and data-poor regime ($T \le n$) where $n$ is the number of arms, and $T$ is the number of samples. At its heart is our improved instance-dependent analysis of the well-known Sequential Halving (SH) algorithm, where we bound the probability of returning an arm whose mean reward is not within $\epsilon$ from the best (i.e., not $\epsilon$-good) for \textit{any} choice of $\epsilon>0$, although $\epsilon$ is not an input to SH. Our bound not only leads to an optimal worst-case simple regret bound of $\sqrt{n/T}$ up to logarithmic factors but also essentially matches the instance-dependent lower bound for returning an $\epsilon$-good arm reported by Katz-Samuels and Jamieson (2020). For the more challenging data-poor regime, we propose Bracketing SH (BSH) that enjoys the same improvement even without sampling each arm at least once. Our empirical study shows that BSH outperforms existing methods on real-world tasks.


Optimistic MLE -- A Generic Model-based Algorithm for Partially Observable Sequential Decision Making

arXiv.org Artificial Intelligence

This paper introduces a simple efficient learning algorithms for general sequential decision making. The algorithm combines Optimism for exploration with Maximum Likelihood Estimation for model estimation, which is thus named OMLE. We prove that OMLE learns the near-optimal policies of an enormously rich class of sequential decision making problems in a polynomial number of samples. This rich class includes not only a majority of known tractable model-based Reinforcement Learning (RL) problems (such as tabular MDPs, factored MDPs, low witness rank problems, tabular weakly-revealing/observable POMDPs and multi-step decodable POMDPs), but also many new challenging RL problems especially in the partially observable setting that were not previously known to be tractable. Notably, the new problems addressed by this paper include (1) observable POMDPs with continuous observation and function approximation, where we achieve the first sample complexity that is completely independent of the size of observation space; (2) well-conditioned low-rank sequential decision making problems (also known as Predictive State Representations (PSRs)), which include and generalize all known tractable POMDP examples under a more intrinsic representation; (3) general sequential decision making problems under SAIL condition, which unifies our existing understandings of model-based RL in both fully observable and partially observable settings. SAIL condition is identified by this paper, which can be viewed as a natural generalization of Bellman/witness rank to address partial observability. This paper also presents a reward-free variant of OMLE algorithm, which learns approximate dynamic models that enable the computation of near-optimal policies for all reward functions simultaneously.


Near-Optimal Sample Complexity Bounds for Constrained MDPs

arXiv.org Artificial Intelligence

In contrast to the advances in characterizing the sample complexity for solving Markov decision processes (MDPs), the optimal statistical complexity for solving constrained MDPs (CMDPs) remains unknown. We resolve this question by providing minimax upper and lower bounds on the sample complexity for learning near-optimal policies in a discounted CMDP with access to a generative model (simulator). In particular, we design a model-based algorithm that addresses two settings: (i) relaxed feasibility, where small constraint violations are allowed, and (ii) strict feasibility, where the output policy is required to satisfy the constraint. For (i), we prove that our algorithm returns an $\epsilon$-optimal policy with probability $1 - \delta$, by making $\tilde{O}\left(\frac{S A \log(1/\delta)}{(1 - \gamma)^3 \epsilon^2}\right)$ queries to the generative model, thus matching the sample-complexity for unconstrained MDPs. For (ii), we show that the algorithm's sample complexity is upper-bounded by $\tilde{O} \left(\frac{S A \, \log(1/\delta)}{(1 - \gamma)^5 \, \epsilon^2 \zeta^2} \right)$ where $\zeta$ is the problem-dependent Slater constant that characterizes the size of the feasible region. Finally, we prove a matching lower-bound for the strict feasibility setting, thus obtaining the first near minimax optimal bounds for discounted CMDPs. Our results show that learning CMDPs is as easy as MDPs when small constraint violations are allowed, but inherently more difficult when we demand zero constraint violation.


Confident Approximate Policy Iteration for Efficient Local Planning in $q^\pi$-realizable MDPs

arXiv.org Artificial Intelligence

We consider approximate dynamic programming in $\gamma$-discounted Markov decision processes and apply it to approximate planning with linear value-function approximation. Our first contribution is a new variant of Approximate Policy Iteration (API), called Confident Approximate Policy Iteration (CAPI), which computes a deterministic stationary policy with an optimal error bound scaling linearly with the product of the effective horizon $H$ and the worst-case approximation error $\epsilon$ of the action-value functions of stationary policies. This improvement over API (whose error scales with $H^2$) comes at the price of an $H$-fold increase in memory cost. Unlike Scherrer and Lesner [2012], who recommended computing a non-stationary policy to achieve a similar improvement (with the same memory overhead), we are able to stick to stationary policies. This allows for our second contribution, the application of CAPI to planning with local access to a simulator and $d$-dimensional linear function approximation. As such, we design a planning algorithm that applies CAPI to obtain a sequence of policies with successively refined accuracies on a dynamically evolving set of states. The algorithm outputs an $\tilde O(\sqrt{d}H\epsilon)$-optimal policy after issuing $\tilde O(dH^4/\epsilon^2)$ queries to the simulator, simultaneously achieving the optimal accuracy bound and the best known query complexity bound, while earlier algorithms in the literature achieve only one of them. This query complexity is shown to be tight in all parameters except $H$. These improvements come at the expense of a mild (polynomial) increase in memory and computational costs of both the algorithm and its output policy.


Bandit Theory and Thompson Sampling-Guided Directed Evolution for Sequence Optimization

arXiv.org Machine Learning

Directed Evolution (DE), a landmark wet-lab method originated in 1960s, enables discovery of novel protein designs via evolving a population of candidate sequences. Recent advances in biotechnology has made it possible to collect high-throughput data, allowing the use of machine learning to map out a protein's sequence-to-function relation. There is a growing interest in machine learning-assisted DE for accelerating protein optimization. Yet the theoretical understanding of DE, as well as the use of machine learning in DE, remains limited. In this paper, we connect DE with the bandit learning theory and make a first attempt to study regret minimization in DE. We propose a Thompson Sampling-guided Directed Evolution (TS-DE) framework for sequence optimization, where the sequence-to-function mapping is unknown and querying a single value is subject to costly and noisy measurements. TS-DE updates a posterior of the function based on collected measurements. It uses a posterior-sampled function estimate to guide the crossover recombination and mutation steps in DE. In the case of a linear model, we show that TS-DE enjoys a Bayesian regret of order $\tilde O(d^{2}\sqrt{MT})$, where $d$ is feature dimension, $M$ is population size and $T$ is number of rounds. This regret bound is nearly optimal, confirming that bandit learning can provably accelerate DE. It may have implications for more general sequence optimization and evolutionary algorithms.