Syed, Shahbaz
TL;DR Progress: Multi-faceted Literature Exploration in Text Summarization
Syed, Shahbaz, Al-Khatib, Khalid, Potthast, Martin
This paper presents TL;DR Progress, a new tool for exploring the literature on neural text summarization. It organizes 514~papers based on a comprehensive annotation scheme for text summarization approaches and enables fine-grained, faceted search. Each paper was manually annotated to capture aspects such as evaluation metrics, quality dimensions, learning paradigms, challenges addressed, datasets, and document domains. In addition, a succinct indicative summary is provided for each paper, consisting of automatically extracted contextual factors, issues, and proposed solutions. The tool is available online at https://www.tldr-progress.de, a demo video at https://youtu.be/uCVRGFvXUj8
Citance-Contextualized Summarization of Scientific Papers
Syed, Shahbaz, Hakimi, Ahmad Dawar, Al-Khatib, Khalid, Potthast, Martin
Current approaches to automatic summarization of scientific papers generate informative summaries in the form of abstracts. However, abstracts are not intended to show the relationship between a paper and the references cited in it. We propose a new contextualized summarization approach that can generate an informative summary conditioned on a given sentence containing the citation of a reference (a so-called "citance"). This summary outlines the content of the cited paper relevant to the citation location. Thus, our approach extracts and models the citances of a paper, retrieves relevant passages from cited papers, and generates abstractive summaries tailored to each citance. We evaluate our approach using $\textbf{Webis-Context-SciSumm-2023}$, a new dataset containing 540K~computer science papers and 4.6M~citances therein.
Evaluating Generative Ad Hoc Information Retrieval
Gienapp, Lukas, Scells, Harrisen, Deckers, Niklas, Bevendorff, Janek, Wang, Shuai, Kiesel, Johannes, Syed, Shahbaz, Fröbe, Maik, Zuccon, Guido, Stein, Benno, Hagen, Matthias, Potthast, Martin
Recent advances in large language models have enabled the development of viable generative information retrieval systems. A generative retrieval system returns a grounded generated text in response to an information need instead of the traditional document ranking. Quantifying the utility of these types of responses is essential for evaluating generative retrieval systems. As the established evaluation methodology for ranking-based ad hoc retrieval may seem unsuitable for generative retrieval, new approaches for reliable, repeatable, and reproducible experimentation are required. In this paper, we survey the relevant information retrieval and natural language processing literature, identify search tasks and system architectures in generative retrieval, develop a corresponding user model, and study its operationalization. This theoretical analysis provides a foundation and new insights for the evaluation of generative ad hoc retrieval systems.
Indicative Summarization of Long Discussions
Syed, Shahbaz, Schwabe, Dominik, Al-Khatib, Khalid, Potthast, Martin
Online forums encourage the exchange and discussion of different stances on many topics. Not only do they provide an opportunity to present one's own arguments, but may also gather a broad cross-section of others' arguments. However, the resulting long discussions are difficult to overview. This paper presents a novel unsupervised approach using large language models (LLMs) to generating indicative summaries for long discussions that basically serve as tables of contents. Our approach first clusters argument sentences, generates cluster labels as abstractive summaries, and classifies the generated cluster labels into argumentation frames resulting in a two-level summary. Based on an extensively optimized prompt engineering approach, we evaluate 19~LLMs for generative cluster labeling and frame classification. To evaluate the usefulness of our indicative summaries, we conduct a purpose-driven user study via a new visual interface called Discussion Explorer: It shows that our proposed indicative summaries serve as a convenient navigation tool to explore long discussions.
Modeling Appropriate Language in Argumentation
Ziegenbein, Timon, Syed, Shahbaz, Lange, Felix, Potthast, Martin, Wachsmuth, Henning
Online discussion moderators must make ad-hoc decisions about whether the contributions of discussion participants are appropriate or should be removed to maintain civility. Existing research on offensive language and the resulting tools cover only one aspect among many involved in such decisions. The question of what is considered appropriate in a controversial discussion has not yet been systematically addressed. In this paper, we operationalize appropriate language in argumentation for the first time. In particular, we model appropriateness through the absence of flaws, grounded in research on argument quality assessment, especially in aspects from rhetoric. From these, we derive a new taxonomy of 14 dimensions that determine inappropriate language in online discussions. Building on three argument quality corpora, we then create a corpus of 2191 arguments annotated for the 14 dimensions. Empirical analyses support that the taxonomy covers the concept of appropriateness comprehensively, showing several plausible correlations with argument quality dimensions. Moreover, results of baseline approaches to assessing appropriateness suggest that all dimensions can be modeled computationally on the corpus.