Goto

Collaborating Authors

 Syed, Saifuddin


Generalised Parallel Tempering: Flexible Replica Exchange via Flows and Diffusions

arXiv.org Machine Learning

Parallel Tempering (PT) is a classical MCMC algorithm designed for leveraging parallel computation to sample efficiently from high-dimensional, multimodal or otherwise complex distributions via annealing. One limitation of the standard formulation of PT is the growth of computational resources required to generate high-quality samples, as measured by effective sample size or round trip rate, for increasingly challenging distributions. To address this issue, we propose the framework: Generalised Parallel Tempering (GePT) which allows for the incorporation of recent advances in modern generative modelling, such as normalising flows and diffusion models, within Parallel Tempering, while maintaining the same theoretical guarantees as MCMC-based methods. For instance, we show that this allows us to utilise diffusion models in a parallelised manner, bypassing the usual computational cost of a large number of steps to generate quality samples. Further, we empirically demonstrate that GePT can improve sample quality and reduce the growth of computational resources required to handle complex distributions over the classical algorithm. Sampling from a complex probability distribution ฯ€ over a state-space X, whose density ฯ€(x) is only known up to a normalising constant, is a fundamental task in modern statistical inference.


Score-Optimal Diffusion Schedules

arXiv.org Machine Learning

DDMs generate a path of probability distributions interpolating between a reference Gaussian distribution and a data distribution by incrementally injecting noise into the data. To numerically simulate the sampling process, a discretisation schedule from the reference back towards clean data must be chosen. An appropriate discretisation schedule is crucial to obtain high quality samples. However, beyond hand crafted heuristics, a general method for choosing this schedule remains elusive. This paper presents a novel algorithm for adaptively selecting an optimal discretisation schedule with respect to a cost that we derive. Our cost measures the work done by the simulation procedure to transport samples from one point in the diffusion path to the next. Our method does not require hyperparameter tuning and adapts to the dynamics and geometry of the diffusion path. Our algorithm only involves the evaluation of the estimated Stein score, making it scalable to existing pre-trained models at inference time and online during training. We find that our learned schedule recovers performant schedules previously only discovered through manual search and obtains competitive FID scores on image datasets.


A Unified Framework for U-Net Design and Analysis

arXiv.org Machine Learning

U-Nets are a go-to, state-of-the-art neural architecture across numerous tasks for continuous signals on a square such as images and Partial Differential Equations (PDE), however their design and architecture is understudied. In this paper, we provide a framework for designing and analysing general U-Net architectures. We present theoretical results which characterise the role of the encoder and decoder in a U-Net, their high-resolution scaling limits and their conjugacy to ResNets via preconditioning. We propose Multi-ResNets, U-Nets with a simplified, wavelet-based encoder without learnable parameters. Further, we show how to design novel U-Net architectures which encode function constraints, natural bases, or the geometry of the data. In diffusion models, our framework enables us to identify that high-frequency information is dominated by noise exponentially faster, and show how U-Nets with average pooling exploit this. In our experiments, we demonstrate how Multi-ResNets achieve competitive and often superior performance compared to classical U-Nets in image segmentation, PDE surrogate modelling, and generative modelling with diffusion models. Our U-Net framework paves the way to study the theoretical properties of U-Nets and design natural, scalable neural architectures for a multitude of problems beyond the square.